抱歉,您的浏览器无法访问本站

本页面需要浏览器支持(启用)JavaScript


了解详情 >

做一些 Linear Algebra 的题。

主要来源是 Linear Algebra Done Right (Third Edition) 的习题,以及 MIT 18.700 Linear Algebra 的一些作业题。

虽然但是,怎么都没答案呀。😢

Q1

Consider the set of complex numbers

G={a+bia,bQ}.G = \{a + bi \mid a, b \in \mathbb{Q}\}.

(The GG stands for Gauss; these numbers might be called Gaussian rational numbers, although I don’t know if they actually are.) Is GG a field (with the same addition and multiplication operations as in C\mathbb{C})? For a question like this, you should either explain why all the axioms for a field are satisfied (you can assume that they hold for C\mathbb{C}), or else explain why one of the axioms fails. A few sentences could be enough to write.

Answer

GG is a field.

  • Closure under addition and multiplication:
    • Assume x=a+bi,y=c+diGx = a+bi, y=c+di\in G
    • So a,b,c,dQa, b, c, d \in \mathbb{Q}
    • So a+c,b+d,(acbd,ad+bc)Qa + c, b + d, (ac - bd, ad + bc)\in \mathbb{Q}
    • x+y=(a+c)+(b+d)iQx + y=(a + c) + (b + d) i\in \mathbb{Q}
    • xy=(acbd)+(ad+bc)iQxy = (ac - bd) + (ad + bc)i\in \mathbb{Q}
  • Community of addition and multiplication:
    • x+y=(a+c)+(b+d)i=(c+a)+(d+b)i=y+xx + y = (a + c) + (b + d)i = (c + a) + (d + b)i = y + x
    • xy=(acbd)+(ad+bc)i=(cadb)+(cb+da)i=yxxy = (ac - bd) + (ad + bc)i = (ca - db) + (cb + da)i = yx
  • Existence of additive and multiplicative identity:
    • 0=0+0iG0 = 0 + 0i\in G
    • 1=1+0iG1 = 1 + 0i\in G
  • Existence of additive inverse:
    • x=abiG-x = -a - bi\in G
  • Existence of multiplicative inverse:
    • Assume x=a+biG{0}x = a + bi\in G\setminus\{0\} and x1=c+dix^{-1}=c+di
    • We have (a+bi)(d+di)=1(a + bi)\cdot (d + di)=1
    • So {acbd=1ad+bc=0\begin{cases} ac - bd = 1 \\ ad + bc = 0 \end{cases}
    • Which is [abba][cd]=[10]\begin{bmatrix} a & -b \\ b & a \end{bmatrix}\begin{bmatrix} c \\ d \end{bmatrix}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}
    • We get the inverse matrix [abba]1=1a2+b2[abba]\begin{bmatrix} a & -b \\ b & a \end{bmatrix}^{-1}=\frac{1}{a^2+b^2}\begin{bmatrix} a & b \\ -b & a \end{bmatrix}
    • So [cd]=1a2+b2[abba][10]=1a2+b2[ab]\begin{bmatrix} c \\ d \end{bmatrix}=\frac{1}{a^2+b^2}\begin{bmatrix} a & b \\ -b & a \end{bmatrix}\begin{bmatrix} 1 \\ 0 \end{bmatrix}=\frac{1}{a^2+b^2}\begin{bmatrix} a \\ -b \end{bmatrix}
    • So c,dQc, d\in \mathbb{Q}, and x1=c+diGx^{-1}=c+di\in G
  • Distributivity of multiplication over addition:
    • Follows from the distributivity of multiplication over addition in C\mathbb{C}

Q2

Consider the set of complex numbers

M={r0+r1eπi2r0,r1Q}M = \left\{r_0 + r_1 e^{\frac{\pi i}{2}} \mid r_0, r_1 \in \mathbb{Q}\right\}

Is MM a field?

Answer

MM is a field.

Consider that eπi2=ie^{\frac{\pi i}{2}} = i, we have M={r0+r1ir0,r1Q}=GM = \{r_0 + r_1 i \mid r_0, r_1 \in \mathbb{Q}\}=G.

Since GG is a field, MM is also a field.

Q3

Consider the set of complex numbers

P={re2πiθr,θQ}P = \left\{re^{2\pi i\theta} \mid r, \theta \in \mathbb{Q}\right\}

Is PP a field?

Answer

PP is not a field.

Consider x=eπi4,y=eπi4Px = e^{\frac{\pi i}{4}}, y=e^{-\frac{\pi i}{4}}\in P, we have:

x+y=2Px + y = \sqrt{2}\notin P

So PP is not closed under addition.

Q4

The set W={(x,y,z,w)R4x+y+z+w=0}W = \left\{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0\right\} is a subspace of R4\mathbb{R}^4. Find a basis of WW.

Answer

We firstly add (1,1,0,0),(1,0,1,0),(1,0,0,1)(1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1) into the basis of WW, they are linearly independent.

Then we could find that if we add (0,1,0,2)(0, 1, 0, 2) in to the set, it will still be linearly independent, and

评论