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Abstract

In this paper we present several results on the expected complexity of a convex hull of n points
chosen uniformly and independently from a convex shape.

(i) We show that the expected number of vertices of the convex hull of n points, chosen uniformly
and independently from a disk is O(n1/3), and O(k log n) for the case a convex polygon with k sides.
Those results are well known (see [RS63, Ray70, PS85]), but we believe that the elementary proof
given here are simpler and more intuitive.

(ii) Let D be a set of directions in the plane, we define a generalized notion of convexity induced
by D, which extends both rectilinear convexity and standard convexity.

We prove that the expected complexity of the D-convex hull of a set of n points, chosen uniformly
and independently from a disk, is O

(
n1/3 +

√
nα(D)

)
, where α(D) is the largest angle between

two consecutive vectors in D. This result extends the known bounds for the cases of rectilinear
and standard convexity.

(iii) Let B be an axis parallel hypercube in IRd. We prove that the expected number of points
on the boundary of the quadrant hull of a set S of n points, chosen uniformly and independently
from B is O(logd−1 n). Quadrant hull of a set of points is an extension of rectilinear convexity to
higher dimensions. In particular, this number is larger than the number of maxima in S, and is
also larger than the number of points of S that are vertices of the convex hull of S.

Those bounds are known [BKST78], but we believe the new proof is simpler.

1 Introduction
Let C be a fixed compact convex shape, and let Xn be a random sample of n points chosen uniformly
and independently from C. Let Zn denote the number of vertices of the convex hull of Xn. Rényi and
Sulanke [RS63] showed that E[Zn] = O(k log n), when C is a convex polygon with k vertices in the
plane. Raynaud [Ray70] showed that expected number of facets of the convex hull is O(n(d−1)/(d+1)),
where C is a ball in IRd, so E[Zn] = O(n1/3) when C is a disk in the plane. Raynaud [Ray70] showed
that the expected number of facets of CH(Xn) = ConvexHull(Xn) is O

(
(log(n))(d−1)/2

)
, where the

points are chosen from IRd by a d-dimensional normal distribution. See [WW93] for a survey of related
results.
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All these bounds are essentially derived by computing or estimating integrals that quantify the
probability of two specific points of Xn to form an edge of the convex hull (multiplying this probability
by
(
n
2

)
gives E[Zn]). Those integrals are fairly complicated to analyze, and the resulting proofs are

rather long, counter-intuitive and not elementary.
Efron [Efr65] showed that instead of arguing about the expected number of vertices directly, one

can argue about the expected area/volume of the convex hull, and this in turn implies a bound on
the expected number of vertices of the convex hull. In this paper, we present a new argument on the
expected area/volume of the convex hull (this method can be interpreted as a discrete approximation to
the integral methods). The argument goes as follows: Decompose C the into smaller shapes (called tiles).
Using the topology of the tiling and the underlining type of convexity, we argue about the expected
number of tiles that are exposed by the random convex hull, where a tile is exposed if it does not lie
completely in the interior of the random convex hull. Resulting in a lower bound on the area/volume of
the random convex hull. We apply this technique to the standard case, and also for more exotic types
of convexity.

In Section 2, we give a rather simple and elementary proofs of the aforementioned bounds E[Zn] =
O(n1/3) for C a disk, and E[Zn] = O (k log n) for C a convex k-gon. We believe that these new elementary
proofs are indeed simpler and more intuitive1 than the previous integral-based proofs.

The question on the expected complexity of the convex hull remains valid, even if we change our
type of convexity. In Section 3, we define a generalized notion of convexity induced by D, a given set of
directions. This extends both rectilinear convexity, and standard convexity. We prove that the expected
complexity of the D-convex hull of a set of n points, chosen uniformly and independently from a disk, is
O
(
n1/3 +

√
nα(D)

)
, where α(D) is the largest angle between two consecutive vectors in D. This result

extends the known bounds for the cases of rectilinear and standard convexity.
Finally, in Section 4, we deal with another type convexity, which is an extension of the generalized

convexity mentioned above for the higher dimensions, where the set of the directions is the standard
orthonormal basis of IRd. We prove that the expected number of points that lie on the boundary of the
quadrant hull of n points, chosen uniformly and independently from the axis-parallel unit hypercube in
IRd, is O(logd−1 n). This readily imply O(logd−1 n) bound on the expected number of maxima and the
expected number of vertices of the convex hull of such a point set. Those bounds are known [BKST78],
but we believe the new proof is simpler and more intuitive.

2 On the Complexity of the Convex Hull of a Random Point
Set

In this section, we show that the expected number of vertices of the convex hull of n points, chosen
uniformly and independently from a disk, is O(n1/3). Applying the same technique to a convex polygon
with k sides, we prove that the expected number of vertices of the convex hull is O(k log n).2 The
following lemma, shows that the larger the expected area outside the random convex hull, the larger is
the expected number of vertices of the convex hull.

Lemma 2.1 Let C be a bounded convex set in the plane, such that the expected area of the convex
1Preparata and Shamos [PS85, pp. 152] comment on the older proof for the case of a disk: ``Because the circle has

no corners, the expected number of hull vertices is comparatively high, although we know of no elementary explanation
of the n1/3 phenomenon in the planar case.'' It is the author's belief that the proof given here remedies this situation.

2As already noted, these results are well known ([RS63, Ray70, PS85]), but we believe that the elementary proofs given
here are simpler and more intuitive.
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hull of n points, chosen uniformly and independently from C, is at least (1− f(n))Area(C), where
1 ≥ f(n) ≥ 0, for n ≥ 0. Then the expected number of vertices of the convex hull is ≤ nf(n/2).

Proof: Let N be a random sample of n points, chosen uniformly and independently from C. Let N1

(resp. N2) denote the set of the first (resp. last) n/2 points of N . Let V1 (resp. V2) denote the number of
vertices of H = CH(N1∪N2) that belong to N1 (resp. N2), where CH(N1∪N2) = ConvexHull(N1∪N2).

Clearly, the expected number of vertices of C is E[V1] + E[V2]. On the other hand,

E
[
V1

∣∣∣N2

]
≤ n

2

(
Area(C)− Area(CH(N2))

Area(C)

)
,

since V1 is bounded by the expected number of points of N1 falling outside CH(N2).
We have

E[V1] = EN2

[
E[V1|N2]

]
≤ E

[
n

2

(
Area(C)− Area(CH(N2))

Area(C)

)]
≤ n

2
f(n/2),

since E[X] = EY [E[X|Y ]] for any two random variables X,Y . Thus, the expected number of vertices
of H is E[V1] + E[V2] ≤ nf(n/2).

Remark 2.2 Lemma 2.1 is known as Efron's Theorem. See [Efr65].

Theorem 2.3 The expected number of vertices of the convex hull of n points, chosen uniformly and
independently from the unit disk, is O(n1/3).

Proof: We claim that the expected area of the convex hull of n points, chosen uniformly and inde-
pendently from the unit disk, is at least π −O

(
n−2/3

)
.

Indeed, let D denote the unit disk, and assume without loss of generality, that n = m3, where m is
a positive integer. Partition D into m sectors, S1, . . . ,Sm, by placing m equally spaced points on the
boundary of D and connecting them to the origin. Let D1, . . . , Dm2 denote the m2 disks centered at the
origin, such that (i) D1 = D, and (ii) Area(Di−1)− Area(Di) = π/m2, for i = 2, . . . ,m2. Let ri denote
the radius of Di, for i = 1, . . . ,m2.

Let Si,j = (Di \Di+1) ∩ Sj, and Sm2,j = Dm2 ∩ Sj, for i = 1, . . . ,m2 − 1, j = 1, . . . ,m. The set Si,j

is called the i-th tile of the sector Sj, and its area is π/n, for i = 1, . . . ,m2, j = 1, . . . ,m.
Let N be a random sample of n points chosen uniformly and independently from D. Let Xj denote

the first index i such that N ∩Si,j 6= ∅, for j = 1, . . . ,m. For a fixed j ∈ {1, . . . ,m}, the probability that
Xj = k is upper-bounded by the probability that the tiles S1,j, . . . , S(k−1),j do not contain any point of
N ; namely, by

(
1− k−1

n

)n. Thus, P [Xj = k] ≤
(
1− k−1

n

)n ≤ e−(k−1), since 1−x ≤ e−x, for x ≥ 0. Thus,

E
[
Xj

]
=

m2∑
k=1

kP [Xj = k] ≤
m2∑
k=1

ke−(k−1) = O(1),

for j = 1, . . . ,m.
Let Ko denote the convex hull of N ∪ {o}, where o is the origin. The tile Si,j is exposed by a set K,

if Si,j \K 6= ∅. We claim that at most Xj−1 +Xj+1 +O(1) tiles are exposed by Ko in the sector Sj, for
j = 1, . . . ,m (where we put X0 = Xm, Xm+1 = X1).

Indeed, let w = w(N, j) = max(Xj−1, Xj+1), and let p, q be the two points in Sj−1,w, Sj+1,w, respec-
tively, such that the number of sets exposed by the triangle T = 4opq, in the sector Si, is maximal.
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o TSi,j

Figure 1: Illustrating the proof that bounds the number of tiles exposed by T inside Sj

Both p and q lie on ∂Dw+1 and on the external radii bounding Sj−1 and Sj+1, as shown in Figure 1.
Clearly, any tile which is exposed in Sj by Ko is also exposed by T . Let s denote the segment connecting
the middle of the base of T to its closest point on ∂Dw. The number of tiles in Sj exposed by T is
bounded by max (Xj−1, Xj+1), plus the number of tiles intersecting the segment s. The length of s is

|oq| − |oq| cos
(
3

2
· 2π
m

)
≤ 1− cos

(
3

2
· 2π
m

)
≤ 1

2

(
3π

m

)2

=
4.5π2

m2
,

since cos(x) ≥ 1− x2/2, for x ≥ 0.
On the other hand, ri+1− ri ≥ ri− ri−1 ≥ 1/(2m2), for i = 2, . . . ,m2. Thus, the segment s intersects

at most d||s||/(1/(2m2))e = d9π2e = 89 tiles, and we have that the number of tiles exposed in the sector
Si by Ko is at most max (Xj−1, Xj+1) + 89 ≤ Xj−1 +Xj+1 + 89, for j = 1, . . . ,m.

Thus, the expected number of tiles exposed by Ko is at most

E

[
m∑
i=1

(Xj−1 +Xj+1 + 89)

]
= O(m).

The area of K = CH(N) is bounded from below by the area of tiles which are not exposed by K.
The probability that K ( Ko (namely, the origin is not inside K, or, equivalently, all points of N lie in
some semidisk) is at most 2π/2n, as easily verified. Hence,

E[Area(K)] ≥ E[Area(C)]− P
[
C 6= K

]
π = π −O(m)

π

n
− 2π

2n
π = π −O

(
n−2/3

)
.

The assertion of the theorem now follows from Lemma 2.1.

Lemma 2.4 The expected number of vertices of the convex hull of n points, chosen uniformly and
independently from the unit square, is O(log n).

Proof: We claim that the expected area of the convex hull of n points, chosen uniformly and inde-
pendently from the unit square, is at least 1−O (log(n)/n).

Let S denote the unit square. Partition S into n rows and n columns, such that S is partitioned
into n2 identical squares. Let Si,j = [(i − 1)/n, i/n] × [(j − 1)/n, j/n] denote the j-th square in the
i-th column, for 1 ≤ i, j ≤ n. Let Si = ∪n

j=1Si,j denote the i-th column of S, for i = 1, . . . , n, and let
S(l, k) = ∪k

i=lSi, for 1 ≤ l ≤ k ≤ n.
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R5(2)
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Figure 2: Illustrating the proof that bounds the number of tiles exposed by CH(N) inside the j-th
column, by using a non-uniform tiling of the strips to the left and to the right of the j-th column. The
area of such a larger tile is at least 1/n.

Let N be a random sample of n points chosen uniformly and independently from S. Let Xj denote
the first index i such that N ∩ (∪j−1

l=1Sl,i) 6= ∅, for j = 2, . . . , n − 1; namely, Xj is the index of the first
row in S(1, j − 1) that contains a point from N . Symmetrically, let X ′

j be the index of the first row in
S(j + 1, n) that contains a point of N . Clearly, E[Xj] = E[X ′

n−j+1], for j = 2, . . . , n− 1.
Let Zj denote the number of squares Si,j in the bottom of the j-th column that are exposed by

CH(N), for j = 2, . . . , n−1. Arguing as in the proof of Theorem 2.3, we have that Zj ≤ max(Xj, X
′
j) ≤

Xj+X ′
j. Thus, in order to bound E[Zj], we first bound E[Xj] by covering the strips S(1, j−1),S(j+1, n)

by tiles of area ≥ 1/n. In particular, let h(l) = dn/(l − 1)e, and let Rj(m) = [0, (j − 1)/n]× [h(n− j +
1)(m− 1)/n, h(j)m/n], and let R′

j(m) = [(j + 1)/n, 1]× [h(j)(m− 1)/n, h(j)m/n], for j = 2, . . . , n− 1.
See Figure 2.

Let Yj denote the minimal index i such that Rj(i) ∩ N 6= ∅. The area of Rj(i) is at least 1/n, for
any i and j. Arguing as in the proof of Theorem 2.3, it follows that E[Yj] = O(1). On the other hand,
E[Xj] ≤ h(j)E[Yj] = O(n/(j − 1)). Symmetrically, E[X ′

j] = O(n/(n− j)).
Thus, by applying the above argument to the four directions (top, bottom, left, right), we have that

the expected number of squares Si,j exposed by CH(N) is bounded by

4n− 4 + 4
n−1∑
j=2

E[Zj] < 4n+ 4
n−1∑
j=2

(E[Xj] + E[X ′
j]) = 4n+ 8

n−1∑
j=2

O

(
n

j − 1

)
= O(n log n),

where 4n− 4 is the number of squares adjacent to the boundary of S.
Since the area of each square is 1/n2, it follows that the expected area of CH(N) is at least 1 −

O(log(n)/n).
By Lemma 2.1, the expected number of vertices of the convex hull is O(log n).

Lemma 2.5 The expected number of vertices of the convex hull of n points, chosen uniformly and
independently from a triangle, is O(log n).

Proof: We claim that the expected area of the convex hull of n points, chosen uniformly and inde-
pendently from a triangle T , is at least (1−O (log(n)/n))Area(T ). We adapt the tiling used in Lemma
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Figure 3: Illustrating the proof of Lemma 2.4 for the case of a triangle.

2.4 to a triangle. Namely, we partition T into n equal-area triangles, by segments emanating from a
fixed vertex, each of which is then partitioned into n equal-area trapezoids by segments parallel to the
opposite side, such that each resulting trapezoid has area 1/n2. See Figure 3.

Notice that this tiling has identical topology to the tiling used in Lemma 2.4. Thus, the proof of
Lemma 2.4 can be applied directly to this case, repeating the tiling process three times, once for each
vertex of T . This readily implies the asserted bound.

Theorem 2.6 The expected number of vertices of the convex hull of n points, chosen uniformly and
independently from a polygon P having k sides, is O(k log n).

Proof: We triangulate P in an arbitrary manner into k triangles T1, . . . , Tk. Let N be a random
sample of n points, chosen uniformly and independently from P . Let Yi = |Ti ∩ N |, Ni = Ti ∩ N ,
and Zi = |CH(Ni)|, for i = 1, . . . , k. Notice that the distribution of the points of Ni inside Ti is
identical to the distribution of Yi points chosen uniformly and independently from Ti. In particular,
E[Zi|Yi] = O(log Yi), by Lemma 2.5, and E[Zi] = EYi

[E[Zi|Yi]] = O(log n), for i = 1, . . . , k.
Thus, E[|CH(N)|] ≤ E

[∑k
i=1 |CH(Ni)|

]
≤
∑k

i=1E[Zi] = O(k log n).

3 On the Expected Complexity of a Generalized Convex Hull
Inside a Disk

In this section, we derive a bound on the expected complexity on a generalized convex hull of a set
of points, chosen uniformly and independently for the unit disk. The new bound matches the known
bounds, for the case of standard convexity and maxima. The bound follows by extending the proof of
Theorem 2.3.

We begin with some terminology and some initial observations, most of them taken or adapted from
[MP97]. A set D of vectors in the plane is a set of directions, if the length of all the vectors in D is 1,
and if v ∈ D then −v ∈ D. Let DIR denote the set of all possible directions. A set C is D-convex if the
intersection of C with any line with a direction in D is connected. By definition, a set C is convex (in
the standard sense), if and only if it is DIR-convex.
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For a set C in the plane, we denote by CHD(C) the D-convex hull of C; that is, the smallest
D-convex set that contains C. While this seems like a reasonable extension of the regular notion of
convexity, its behavior is counterintuitive. For example, let DQ denote the set of all rational directions
(the slopes of the directions are rational numbers). Since DQ is dense in DIR, one would expect that
CHDQ

(C) = CHDIR
(C) = CH(C). However, if C is a set of points such that the slope of any line

connecting a pair of points of C is irrational, then CHDQ
(C) = C. See [OSSW85, RW88, RW87] for

further discussion of this type of convexity.

Definition 3.1 Let f be a real function defined on a D-convex set C. We say that f is D-convex if,
for any x ∈ C and any v ∈ D, the function g(t) = f(x+ tv) is a convex function of the real variable t.
(The domain of g is an interval in IR, as C is assumed to be D-convex.)

Clearly, any convex function, in the standard sense, defined over the whole plane satisfies this
condition.

Definition 3.2 Let C ⊆ IR2. The set CHD(C), called the functional D-convex hull of C, is defined as

CHD(C) =

{
x ∈ IR2

∣∣∣∣ f(x) ≤ sup
y∈C

f(y) for all D-convex f : IR2 → IR

}
A set C is functionally D-convex if C = CHD(C).

Definition 3.3 Let D be a set of directions. A pair of vectors v1, v2 ∈ D, is a D-pair, if v2 is
counterclockwise from v1, and there is no vector in D between v1 and v2. Let Dpairs denote the set of all
D-pairs. Let pspan(u1, u2) denote the portion of the plane that can be represented as a positive linear
combination of u1, u2 ∈ D. Thus pspan(u1, u2) is the open wedge bounded by the rays emanating from
the origin in directions u1, u2. We define by (v1, v2)L = pspan(−v1, v2) and (v1, v2)R = pspan(v1,−v2):
these are two of the four quadrants of the plane induced by the lines containing v1 and v2. Similarly, for
v ∈ D we denote by vL and vR the two open half-planes defined by the line passing through v. Let

Q(D) =
{
vL, vR

∣∣∣ v ∈ D
}
∪
{
(v1, v2)R, (v1, v2)L

∣∣∣ (v1, v2) ∈ Dpairs

}
.

Definition 3.4 For a set S ⊆ IR2 we denote by T (S) the set of translations of S in the plane, that is
T (S) =

{
S + p

∣∣∣ p ∈ IR2
}

. Given a set of directions D, let T (D) =
⋃

Q∈Q(D) T (Q).

For DIR, the set T (DIR) is the set of all open half-planes. The standard convex hull of a planar point
set S can be defined as follows: start from the whole plane, and remove from it all the open half-planes
H+ such that H+ ∩ S = ∅. We extend this definition to handle D-convexity for an arbitrary set of
directions D, as follows:

D-CH(S) = IR2 \

 ⋃
I∈T (D),I∩S=∅

I

 ;

that is, we remove from the plane all the translations of quadrants and halfplanes in Q(D) that do not
contain a point of S. See Figures 4, 5.

For the case Dxy = {(0, 1), (1, 0), (0,−1), (−1, 0)}, Matoušek and Plecháč [MP97] showed that if
Dxy-CH(S) is connected, then CHDxy(S) = Dxy-CH(S).
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(a) (b) (c)

Figure 4: (a) A set of directions D, (b) the set of quadrants Q(D) induced by D, and (c) the D-CH of
three points.

(a) (b) (c)

Figure 5: (a) A set of directions D, such that α(D) > π/2, (b) the set of quadrants Q(D) induced by
D, and (c) the D-CH of a set of points which is not connected.

Definition 3.5 For a set of directions D, we define the density of D to be

α(D) = max
(v1,v2)∈Dpairs

α(v1, v2),

where α(v1, v2) denotes the counterclockwise angle from v1 to v2.

See Figure 5, for an example of a set of directions with density larger than π/2.

Corollary 3.6 Let D be a set of directions in the plane. Then:

• The set D-CH(A) is D-convex, for any A ⊆ IR2.

• For any A ⊆ B ⊆ IR2, one has D-CH(A) ⊆ D-CH(B).

• For two sets of directions D1 ⊆ D2 we have D1-CH(S) ⊆ D2-CH(S), for any S ⊆ IR2.

• Let S be a bounded set in the plane, and let D1 ⊆ D2 ⊆ D3 · · · be a sequence of sets of directions,
such that limi→∞ α(Di) = 0. Then, intCH(S) ⊆ limi→∞Di-CH(S) ⊆ CH(S).

Lemma 3.7 Let D a set of directions, and let S be a finite set of points in the plane. Then C = D-CH(S)
is a polygonal set whose complexity is O(|S ∩ ∂C|).

Proof: It is easy to show that C is polygonal. We charge each vertex of C to some point of S ′ = S∩∂C.
Let C ′ be a connected component of C. If C ′ is a single point, then this is a point of S ′. Otherwise, let
e be an edge of C ′, and let I be a set in T (D) such that e ⊆ ∂I, and I ∩ S = ∅.
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Since e is an edge of C ′, there is no q ∈ IR2 such that e ⊆ q + I, and (q + I) ∩ S = ∅. This implies
that there must be a point p of S on ∂I ∩ le, where le is the line passing through e. However, C is a
D-convex set, and the direction of e belongs to D. It follows that le intersects C along a connected set
(i.e., the segment e), and p ∈ le ∩ C = e. We charge the edge e to p. We claim that a point p of S ′

can be charged at most 4 times. Indeed, for each edge e′ of C incident to p, there is a supporting set in
T (D), such that p and e′ lie on its boundary. Only two of those sets can have angle less than π/2 at p
(because such a set corresponds to a D-pair(v1, v2) with α(v1, v2) > π/2). Thus, a point of S ′ is charged
at most max(2π/(π/2), π/(π/2) + 2) = 4 times.

Lemma 3.8 Let D be a set of directions, and let K be a bounded convex body in the plane, such that
the expected area of D-CH(N) of a set N of n points, chosen uniformly and independently from K, is
at least (1− f(n))Area(K), where 1 ≥ f(n) ≥ 0, for n ≥ 1. Then, the expected number of vertices of
C = D-CH(N) is O(nf(n/2)).

Proof: By Lemma 3.7, the complexity of C is proportional to the number of points of N on the
boundary of C. Using this observation, it is easy to verify that the proof of Lemma 2.1 can be extended
to this case.

We would like to apply the proof of Theorem 2.3 to bound the expected complexity of a random
D-convex hull inside a disk. Unfortunately, if we try to concentrate only on three consecutive sectors (as
in Figure 1) it might be that there is a quadrant I of T (D) that intersects the middle the middle sector
from the side (i.e. through the two adjacent sectors). This, of course, can not happen when working
with the regular convexity. Thus, we first would like to decompose the unit disk into ``safe'' regions,
where we can apply a similar analysis as the regular case, and the ``unsafe'' areas. To do so, we will
first show that, with high probability, the D-CH of a random point set inside a disk, contains a ``large''
disk in its interior. Next, we argue that this implies that the random D-CH covers almost the whole
disk, and the desired bound will readily follows from the above Lemma.

Definition 3.9 For r ≥ 0, let Br denote the disk of radius of r centered at the origin.

Lemma 3.10 Let D be a set of directions, such that 0 ≤ α(D) ≤ π/2. Let N be a set of n points chosen
uniformly and independently from the unit disk. Then, with probability 1 − n−10 the set D-CH(N)
contains Br in its interior, where r = 1− c

√
log n/n, for an appropriate constant c.

Proof: Let r′ = 1−c
√

(log n)/n, where c is a constant to be specified shortly. Let q be any point of Br′ .
We bound the probability that q lies outside C = D-CH(N) as follows: Draw 8 rays around q, such that
the angle between any two consecutive rays is π/4. This partitions q + Br′′ , where r′′ = c

√
(log n)/n,

into eight portions R1, . . . , R8, each having area πc2 log n/(8n). Moreover, Ri ⊆ q + Br′′ ⊆ B1, for
i = 1, . . . , 8. The probability of a point of N to lie outside Ri is 1− c2 log n/(8n). Thus, the probability
that all the points of N lie outside Ri is

P
[
N ∩Ri = ∅

]
≤
(
1− c2 log n

8n

)n

≤ e−(c2 logn)/8 = n−c2/8,

since 1 − x ≤ e−x, for x ≥ 0. Thus, the probability that one of the Ri's does not contain a point of
N is bounded by 8n−c2/8. We claim that if Ri ∩ N 6= ∅, for every i = 1, . . . , 8, then q ∈ C. Indeed, if
q /∈ C then there exists a set Q ∈ Q(D), such that (q +Q) ∩N = ∅. Since α(D) ≤ π/2 there exists an
i, 1 ≤ i ≤ 8, such that Ri ⊆ q + Q; see Figure 6. This is a contradiction, since Ri ∩N 6= ∅. Thus, the
probability that q lies outside C is ≤ 8n−c2/8.
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R1

R2F3

R4

R5

R6 R7

R8

q

q +Q

Figure 6: Since α(D) ≤ π/2, any quadrant Q ∈ Q(D), when translated by q, must contain one of the
Ri's.

Br

B1

T

−→v1

−→v2
o

Figure 7: The dark areas are the unsafe areas for a consecutive pairs of directions v1, v2 ∈ D.

Let N ′ denote a set of n10 points spread uniformly on the boundary of Br′ . By the above analysis,
all the points of N ′ lie inside C with probability at least 1− 8n10−c2/8. Furthermore, arguing as above,
we conclude that Br ⊆ D-CH(N ′), where r = 1 − 2c

√
(log n)/n. Hence, with probability at least

1− 8n10−c2/8, D-CH(C) contains Br. The lemma now follows by setting c = 20, say.
Since the set of directions may contain large gaps, there are points in B1 \Br that are ``unsafe'', in

the following sense:

Definition 3.11 Let D be a set of directions, and let 0 ≤ r ≤ 1 be a prescribed constant, such that
0 ≤ α(D) ≤ π/2. A point p in B1 is safe, relative to Br, if op ⊆ D-CH(Br ∪ {p}).

See Figure 7 for an example how the unsafe area looks like. The behavior of the D-CH inside the
unsafe areas is somewhat unpredictable. Fortunately, those areas are relatively small.

Lemma 3.12 Let D be a set of directions, such that 0 ≤ α(D) ≤ π/2, and let r = 1−O
(√

(log n)/n
)

.
The unsafe area in B1, relative to Br, can be covered by a union of O(1) caps. Furthermore, the length
of the base of such a cap is O(((log n)/n)1/4), and its height is O

(√
(log n)/n

)
.

Proof: Let p be an unsafe point of B1. Let −→v1 ,−→v2 be the consecutive pair of vectors in D, such
that the vector −→po lies between them. If ray(p,−→v1) ∩ Br 6= ∅, and ray(p,−→v2) ∩ Br 6= ∅ then po ⊆
CH ({p, o, p1, p2}) ⊆ D-CH(Br ∪ {p}), for any pair of points p1 ∈ Br ∩ ray(p,−→v1), p2 ∈ Br ∩ ray(p,−→v2).
Thus, p is unsafe only if one of those two rays miss Br. Since p is close to Br, the angle between the
two tangents to Br emanating from p is close to π. This implies that the angle between −→v1 and −→v2 is at
least π/4 (provided n is a at least some sufficiently large constant), and the number of such pairs is at
most 8.
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The area in the plane that sees o in a direction between −→v1 and −→v2 , is a quadrant Q of the plane.
The area in Q which is is safe, is a parallelogram T . Thus, the unsafe area in B1 that induced by the
pair −→v1 and −→v2 is (B1 ∩Q) \ T . Since α(D) ≤ π/2, this set can covered with two caps of B1 with their
base lying on the boundary of Br. See Figure 7.

The height of such a cap is 1 − r = O
(√

logn
n(π−α)

)
, and the length of the base of such a cap is

2
√
1− r2 = O

((
logn

n(π−α)

)1/4)
.

The proof of Lemma 3.12 is where our assumption that α(D) ≤ π/2 plays a critical role. Indeed, if
α(D) > π/2, then the unsafe areas in B1 \Br becomes much larger, as indicated by the proof.

Theorem 3.13 Let D be a set of directions, such that 0 ≤ α(D) ≤ π/2. The expected number of vertices
of D-CH(N), where N is a set of n points, chosen uniformly and independently from the unit disk, is
O
(
n1/3 +

√
nα(D)

)
.

Proof: We claim that the expected area D-CH(N) is at least π−O
(
n−2/3 +

√
α/n

)
, where α = α(D).

The theorem will then follow from Lemma 3.8.
Indeed, let m be an integer to be specified later, and assume, without loss of generality, that m divides

n. Partition B into m congruent sectors, S1, . . . ,Sm. Let B1, . . . , Bµ denote the µ = n/m disks centered
at the origin, such that (i) B1 = B1, and (ii) Area(Bi−1) − Area(Bi) = π/µ, for i = 2, . . . , µ. Let ri
denote the radius of Bi, for i = 1, . . . , µ. Note3, that ri − ri+1 ≥ ri−1 − ri ≥ 1/(2µ), for i = 2, . . . , µ− 1.

Let r = 1−O
(√

(log n)/n
)

, and let U be the set of sectors that either intersect an unsafe area of B
relative to Br, or their neighboring sectors intersect the unsafe area of B. By Lemma 3.12, the number
of sectors in U is O(1) ·O

(
((logn)/n)1/4

(2π/m)

)
= O(m((log n)/n)1/4).

Let Si,j = (Bi \ Bi+1) ∩ Sj, and Sµ,j = Bµ ∩ Sj, for i = 1, . . . , µ− 1, and j = 1, . . . ,m. The set Si,j

is called the i-th tile of the sector Sj, and its area is π/n, for i = 1, . . . , µ, and j = 1, . . . ,m.
Let Xj denote the first index i such that N ∩ Si,j 6= ∅, for j = 1, . . . ,m. The probability that

Xj = k is upper-bounded by the probability that the tiles S1,j, . . . , S(k−1),j do not contain any point of
N ; namely, by

(
1− k−1

n

)n. Thus, P [Xj = k] ≤
(
1− k−1

n

)n ≤ e−(k−1). Thus,

E
[
Xj

]
=

µ∑
k=1

kP [Xj = k] ≤
µ∑

k=1

ke−(k−1) = O(1),

for j = 1, . . . ,m.
Let C denote the set D-CH(N ∪Br). The tile Si,j is exposed by a set K, if Si,j \K 6= ∅.
We claim that the expected number of tiles exposed by C in a section Sj /∈ U is at most Xj−1 +

Xj+1 +O(µ/m2 + αµ/m), for j = 1, . . . ,m (where we put X0 = Xm, Xm+1 = X1).
Indeed, let w = max(Xj−1, Xj+1), and let p, q be the two points in Sj−1,w, Sj+1,w, respectively, such

that the number of sets exposed by the triangle T = 4opq, in the sector Sj, is maximal. Both p and q
lie on ∂Bw+1 and on the external radii bounding Sj−1 and Sj+1, as shown in Figure 1. Let s denote the
segment connecting the midpoint ρ of the base of T to its closest point on ∂Bw. The number of tiles in
Sj exposed by T is bounded by w, plus the number of tiles intersecting the segment s. The length of s
is

|oq| − |oq| cos
(
3

2
· 2π
m

)
≤ 1− cos

(
3π

m

)
≤ 1

2

(
3π

m

)2

=
4.5π2

m2
,

3 Area(B1)−Area(B2) = π(1−r22) = π/µ, thus r22 = 1−1/µ. We have r2 ≤ 1−1/(2µ), and r1−r2 ≥ 1−(1−1/(2µ)) =
1/(2µ).
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T

V

p

q

≥ π − α

Figure 8: The portion of T that can be removed by a quadrant Q of T (D), is covered by the darkly-
shaded circular cap, such that any point on its bounding arc creates an angle π − α with p and q.

since cosx ≥ 1− x2/2, for x ≥ 0.
On the other hand, the segment s intersects at most d||s||/(1/(2µ))e = O(µ/m2) tiles, and we have

that the number of tiles exposed in the sector Si by T is at most w +O(µ/m2), for j = 1, . . . ,m.
Since Sj /∈ U , the points p, q are safe, and op, oq ⊆ C. This implies that the only additional tiles

that might be exposed in Sj by C, are exposed by the portion of the boundary of C between p and q
that lie inside T . Let V be the circular cap consisting of the points in T lying between pq and a circular
arc γ ⊆ T , connecting p to q, such that for any point p′ ∈ γ one has ∠pp′q = π − α. See Figure 8.

Let Q ∈ T (D) be any quadrant of the plane induce by D, such that Q ∩ N = ∅ (i.e. C ∩ Q = ∅),
and Q ∩ T 6= ∅. Then, Q ∩ op = ∅, Q ∩ oq = ∅ since p and q are safe. Moreover, the angle of Q is at
least π − α, which implies that Q ∩ T ⊆ V . See Figure 8.

Let s′ be the segment oρ ∩ V , where ρ is as above, the midpoint of pq. The length of s′′ is

|s′| ≤ sin

(
3

2
· 2π
m

)
tan

α

2
≤ 3π

m

√
2α

2
≤ 3πα

m
,

since sinx ≤ x, for x ≥ 0, and 1/
√
2 ≤ cos (α/2) (because 0 ≤ α ≤ π/2).

Thus, the expected number of tiles exposed by C, in a sector Sj /∈ U , is bounded by

Xj−1 +Xj+1 +O
( µ

m2

)
+O

(
3πα/m

1/(2µ)

)
= Xj−1 +Xj+1 +O

( µ

m2

)
+O

(αµ
m

)
.

Thus, the expected number of tiles exposed by C, in sectors that do not belong to U , is at most

E

[
m∑
j=1

(
Xj−1 +Xj+1 +O

( µ

m2

)
+O

(αµ
m

))]
= O

(
m+

µ

m
+ αµ

)
.

Adding all the tiles that lie outside Br in the sectors that belong to U , it follows that the expected
number of tiles exposed by C is at most

O

(
m+

µ

m
+ αµ+ |U | · 1− r

1/2µ

)
= O

(
m+

µ

m
+ αµ+m

(
log n

n

)1/4

· µ

√(
log n

n

))

= O

(
m+

n

m2
+

αn

m
+ n

(
log n

n

)3/4
)

= O
(
m+

n

m2
+

αn

m
+ n1/4 log3/4 n

)
.

12



q

q +Qtop

§j−1

§j

§j+1

Figure 9: If Aj happens, then the squares Sj−1,Sj+1 do not contain a point of N . Thus, if q is the
highest point in Sj, then q +Qtop can not contain a point of N , and q is a vertex of D′

xy-CH(N).

Setting m = max
(
n1/3,

√
nα
)
, we conclude that the expected number of tiles exposed by C is O

(
n1/3 +

√
nα
)
.

The area of C ′ = D-CH(N) is bounded from below by the area of the tiles which are not exposed by
C ′. The probability that C ′ 6= C (namely, that the disk Br is not inside C ′) is at most n−10, by Lemma
3.10. Hence the expected area of C ′ is at least

E[Area(C)]− Prob
[
C 6= C ′

]
π = π −O

(
n1/3 +

√
nα
) π
n
− n−10π = π −O

(
n−2/3 +

√
α

n

)
.

The assertion of the theorem now follows from Lemma 3.8.
The expected complexity of the Dxy-CH of n points, chosen uniformly and independently from the

unit square, is O(log n) (Lemma 2.4). Unfortunately, this is a degenerate case for a set of directions
with α(D) = π/2, as the following corollary testifies:

Corollary 3.14 Let D′
xy be the set of directions resulting from rotating Dxy by 45 degrees. Let N be a

set of n points, chosen independently and uniformly from the unit square S ′. The expected complexity
of D′

xy-CH(N) is Ω (
√
n).

Proof: Without loss of generality, assume that n = m2 for some integer m. Tile S ′ with n translated
copies of a square of area 1/n. Let S1, . . . ,Sm denote the squares in the top raw of this tiling, from left
to right. Let Aj denote the event that Sj contains a point of N , and neither of the two adjacent squares
Sj−1, Sj+1 contains a point of N , for j = 2, . . . ,m− 1.

We have

Prob
[
Aj

]
= Prob

[
Sj+1 ∩N = ∅ and Sj−1 ∩N = ∅

]
− Prob

[
(Sj−1 ∪ Sj ∪ Sj+1) ∩N = ∅

]
,

for j = 2, . . . ,m− 1. Hence,

lim
n→∞

Prob
[
Aj

]
= lim

n→∞

((
1− 2

n

)n

−
(
1− 3

n

)n)
= e−2 − e−3 ≈ 0.0855

This implies, that for n large enough, Prob
[
Aj

]
≥ 0.01. Thus, the expected value of Y is Ω(m) =

Ω (
√
n), where Y is the number of Aj's that have occurred, for j = 2, . . . ,m− 1. However, if Aj occurs,

then C = D′
xy-CH(N) must have a vertex at Sj. Indeed, let Qtop denote the quadrant of Q(D′

xy) that
contains the positive y-axis. If we translate Qtop to the highest point in Sj ∩N , then it does not contain
a point of N in its interior, implying that this point is a vertex of C, see Figure 9.

This implies that the expected complexity of D′
xy-CH(N) is Ω (

√
n)
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4 On the Expected Number of Points on the Boundary of the
Quadrant Hull Inside a Hypercube

In this section, we show that the expected number of points on the boundary of the quadrant hull of a
set S of n points, chosen uniformly and independently from the unit cube is O(logd−1 n). Those bounds
are known [BKST78], but we believe the new proof is simpler.

Definition 4.1 ([MP97]) Let Q be a family of subsets of IRd. For a set A ⊆ IRd, we define the Q-hull
of A as

Q-co(A) =
⋂{

Q ∈ Q
∣∣∣A ⊆ Q

}
.

Definition 4.2 ([MP97]) For a sign vector s ∈ {−1,+1}d, define

qs =
{
x ∈ IRd

∣∣∣ sign(xi) = si, for i = 1, . . . , d
}
,

and for a ∈ IRd, let qs(a) = qs + a. We set Qsc =
{
IRd \ qs(a)

∣∣∣ a ∈ IRd, s ∈ {−1,+1}d
}

. We shall refer
to Qsc-co(A) as the quadrant hull of A. These are all points which cannot be separated from A by any
open orthant in space (i.e., quadrant in the plane).

Definition 4.3 Given a set of points S ⊆ IRd, a point p ∈ IRd is Qsc-exposed, if there is s ∈ {−1,+1}d,
such that qs(p) ∩ S = ∅. A set C is Qsc-exposed, if there exists a point p ∈ C which is Qsc-exposed.

Definition 4.4 For a set S ⊆ IRd, let nsc(S) denote the number of points of S on the boundary of
Qsc-co(S).

Theorem 4.5 Let C be a unit axis parallel hypercube in IRd, and let S be a set of n points chosen
uniformly and independently from C. Then, the expected number of points of S on the boundary of
H = Qsc-co(S) is O(logd−1(n)).

Proof: We partition C into equal size tiles, of volume 1/nd; that is C(i1, i2, . . . , id) = [(i1−1)/n, i1/n]×
· · · × [(id − 1)/n, id/n], for 1 ≤ i1, i2, . . . , id ≤ n.

We claim that the expect number of tiles in our partition of C which are exposed by S is O(nd−1 logd−1 n).
Indeed, let q = q(−1,−1,...,−1) be the ``negative'' quadrant of IRd. Let X(i2, . . . , id) be the maximal

integer k, for which C(k, i2, . . . , id) is exposed by q. The probability that X(i2, . . . , id) ≥ k is bounded
by the probability that the cubes C(l1, l2, . . . , ld) does not contain a point of S, where l1 < k, l2 <
i2, . . . , ld < id. Thus,

Pr
[
X(i2, . . . , id) ≥ k

]
≤

(
1− (k − 1)(i2 − 1) · · · (id − 1)

nd

)n

≤ exp

(
−(k − 1)(i2 − 1) · · · (id − 1)

nd−1

)
,

since 1− x ≤ e−x, for x ≥ 0.
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Hence, the probability that Pr
[
X(i2, . . . , id) ≥ i ·m+ 1

]
≤ e−i, where

m =
⌈

nd−1

(i2−1)···(id−1)

⌉
. Thus,

E
[
X(i2, . . . , id)

]
=

∞∑
i=1

iPr
[
X(i2, . . . , id) = i

]
=

∞∑
i=0

(i+1)m∑
j=im+1

j Pr
[
X(i2, . . . , id) = j

]
≤

∞∑
i=0

(i+ 1)mPr
[
X(i2, . . . , id) ≥ im+ 1

]
≤

∞∑
i=0

(i+ 1)me−i = O(m).

Let r denote the expected number of tiles exposed by q in C. If C(i1, . . . , id) is exposed by q, then
X(i2, . . . , id) ≥ i1. Thus, one can bound r by the number of tiles on the boundary of C, plus the sum of
the expectations of the variables X(i2, . . . , id). We have

r = O(nd−1) +
n−1∑
i2=2

n−1∑
i3=2

· · ·
n−1∑
id=2

O

(
nd−1

(i2 − 1)(i3 − 1) · · · (id − 1)

)

= O
(
nd−1

) n−1∑
i2=2

1

i2 − 1

n−1∑
i3=2

1

i3 − 1
· · ·

n−1∑
id=2

1

id − 1
= O

(
nd−1 logd−1 n

)
.

The set Qsc contains translation of 2d different quadrants. This implies, by symmetry, that the
expected number of tiles exposed in C by S is O

(
2dnd−1 logd−1 n

)
= O

(
nd−1 logd−1 n

)
. However, if a tile

is not exposed by any qs, for s ∈ {−1,+1}d, then it lies in the interior of H. Implying that the expected
volume of H is at least

nd −O
(
nd−1 logd−1 n

)
nd

= 1−O

(
logd−1 n

n

)
.

We now apply an argument similar to the one used in Lemma 2.1 (Efron's Theorem), and the theorem
follows.

Remark 4.6 A point p of S is a maxima, if there is no point p′ in S, such that pi ≤ p′i, for i = 1, . . . , d.
Clearly, a point which is a maxima, is also on the boundary of Qsc-co(S). By Theorem 4.5, the expected
number of maxima in a set of n points chosen independently and uniformly from the unit hypercube in
IRd is O(logd−1 n). This was also proved in [BKST78], but we believe that our new proof is simpler.

Also, as noted in [BKST78], a vertex of the convex hull of S is a point of S lying on the boundary
of the Qsc-co(S). Hence, the expected number of vertices of the convex hull of a set of n points chosen
uniformly and independently from a hypercube in IRd is O(logd−1 n).
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