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Abstract

With the advent of the 2020s AI era, it seems that all efforts have been focused on
Transformers. However, we believe ResNet still holds its place. By leveraging a
voting mechanism between ResNet and Transformer architectures, we may achieve
different results. We propose a new model voting method to add a dimension for
voting. In the Kaggle Cassava Leaf Disease Classification competition, our model
achieved rank 4/3901 on the Public Benchmark and rank 2/3901 on the Private
Benchmark. Our training code can be found in GitHub and all our models can be
found in Hugging Face.

1 Introduction

As outlined in the competition overview [6], cassava is an important crop in Africa, but its yields are
significantly affected by diseases. The current disease monitoring primarily relies on visual inspection
by agricultural experts, which is labor-intensive and costly. Thus, it is essential to identify common
cassava diseases to address this issue. As illustrated in Fig. 1, there are four main types of cassava
diseases: Bacterial Blight, Brown Streak Disease, Green Mottle, and Mosaic Disease. Each disease
displays distinct characteristics on the leaves, allowing for differentiation from healthy cassava leaves
through image classifiers.

Bacterial Blight (Fig. 1a) is characterized by dead leaf spots surrounded by yellow halos [16]. Brown
Streak Disease (Fig. 1b) presents as patches of yellow intermingled with the standard green color
of the leaves [17]. Green Mottle Disease (Fig. 1c) is identifiable by green spots on the leaves that
appear as if they were painted on [18]. Lastly, Mosaic Disease (Fig. 1d) results in symptoms such as
discoloration, with leaves showcasing variations of yellow, white, light, and dark shades [3].

(a) Bacterial Blight (b) Brown Streak (c) Green Mottle (d) Mosaic

Figure 1: Cassava Disease Type

The task aims to classify cassava leaf images based on the input data, to determine whether the leaf is
healthy or infected by a specific type of virus illustrated before. Specifically, the input consists of
image data with a resolution of 800× 600 pixels, and the output is a category label indicating the
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Figure 2: Imbalanced Cassava Disease Label Distribution

leaf’s condition. We categorize diseases from types 0 to 3 as Bacterial Blight through Mosaic and use
category 4 to label healthy cassava leaf images.

There are several challenges in the task. First, the original dataset has a significant class imbalance,
with many more samples available for the Mosaic disease type than for the others. This imbalance can
lead to biased model predictions, where the classifier favors the majority classes and underperforms
the minority classes. Second, our analysis shows that a single model struggles to accurately capture
and differentiate the characteristics of all virus types due to subtle visual differences among some
categories. To address these challenges and improve overall classification performance, it is necessary
to use strategies such as data augmentation, re-sampling techniques, and model fusion.

Our dataset comes from the public dataset on Kaggles [6], which includes 21367 labeled images
during routine surveys conducted in Uganda. These images were captured by the farmers in their
cassava gardens, which show real-world scenarios to distinguish different kinds of diseases.

2 Data Cleaning and Processing

This section details the steps undertaken to prepare the dataset for training and testing the Cassava
Leaf Disease Classification model. The dataset was analyzed, cleaned, and processed to ensure proper
training and evaluation.

2.1 Exploratory Data Analysis (EDA)

The dataset initially contained 21,397 images categorized into five classes. Analysis of the training
dataset revealed the following class distribution shown in Figure 2.

Figure 2 highlighted a significant class imbalance, with Label 3 accounting for over 60% of the
dataset, while Label 0 represented only 5%. To address this imbalance and explore its impact on
the model’s performance, two dataset preparation strategies were employed: Balanced Data and
Imbalanced Data with Train-Validation Split.

2.2 Dataset Preparation

2.2.1 Balancing the Data

To address the class imbalance in the training dataset, a validation set of 500 samples was created
by randomly sampling 100 images from each class. The remaining samples were allocated to the
training set, resulting in the new distribution shown in Figure 3.

• Train Set: 20,897 samples.

• Validation Set: 500 samples.

• Test Set: 1 sample (reserved for evaluation consistency).
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Figure 3: Balanced Cassava Disease Label Distribution
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Figure 4: Train-Val Split Cassava Disease Label Distribution for the Full Dataset

The training data was further balanced by down-sampling all classes to the size of the smallest class
(987 samples). This ensured an equal representation of all classes as seen in Figure[3]

By addressing the imbalance, this approach aims to ensure that the model receives equal exposure to
all classes during training. This is particularly beneficial for smaller classes that might otherwise be
under-represented.

2.2.2 Train-Validation Split with Imbalanced Data

To maintain the original class distribution, a separate train-validation split was performed without
balancing the dataset:

• Train Set: 95% of the dataset (20,327 samples).

• Validation Set: 5% of the dataset (1,070 samples).

• Test Set: 1 sample.

The distribution is described in Figure 4. This split allows the model to learn from the imbalanced
distribution, simulating a real-world scenario where imbalances exist. Maintaining the imbalance is
essential to evaluate how the model performs without any balancing techniques applied.
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2.3 Data Augmentation

Data augmentation is a crucial technique in computer vision that is used to enhance the diversity
of the training dataset without the need to collect additional data. It helps improve the model’s
generalization ability by simulating real-world variations, such as changes in orientation, scale,
lighting, and color. For this analysis, data augmentation was applied to the training dataset to make
the model robust to noise and variations in cassava leaf images.

2.3.1 Preprocessing Steps for Training

Focused on increasing dataset variability through augmentation (e.g., random rotations, flips, and
color jitter) to improve the model’s generalization ability and robustness. The detailed reason we do
this is described in Section 3.2.1.

The following augmentation techniques were applied during the training phase:

• Random Rotation: The images were randomly rotated by up to 45 degrees to account for
variations in orientation.

• Random Resized Crop: Images were randomly cropped and resized to ensure consistent
input size while preserving variability in the content.

• Random Horizontal Flip: Horizontal flipping of images was performed to simulate varia-
tions in leaf direction.

• Random Vertical Flip: Vertical flipping was applied to enhance the diversity of leaf
orientations in the training data.

• Color Jitter: Random adjustments were made to the brightness, contrast, saturation, and
hue of images to account for variations in lighting and color conditions.

• ToTensor: The ToTensor transformation was applied to convert the augmented images into
PyTorch tensors, ensuring compatibility with deep learning models.

• Normalization: Finally, the images were normalized using the mean and standard deviation
values obtained from the pretrained image processor. This scales pixel values to a standard
range, aiding in faster convergence during training.

These transformations were applied during the training phase using the following pipeline:

1 self.train_transforms = Compose(
2 [
3 RandomRotation(degrees =45),
4 RandomResizedCrop(size),
5 RandomHorizontalFlip (),
6 RandomVerticalFlip (),
7 ColorJitter(brightness =0.1, contrast =0.1, saturation =0.1,

hue =0.1) ,
8 ToTensor (),
9 normalize ,

10 ]
11 )

To better understand the impact of data augmentation, visualization was performed on the transforma-
tions applied to a sample image from the training dataset. Each transformation demonstrates how the
training data is modified to improve the model’s robustness and generalization as seen in Figure 5.

2.3.2 Preprocessing Steps for Validation

In contrast to the training dataset, the validation dataset underwent simpler preprocessing steps
designed to preprocess the images uniformly without augmentation. Although each model has
its own image processor, we decided to redefine image processing to ensure the correct order of
transformations. This ensures that the evaluation reflects how the model performs on real-world,
unaltered images:
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(a) Original (b) Random Rotation

(c) Random Resized Crop

(d) Random Horizontal Flip (e) Random Vertical Flip (f) Color Jitter

Figure 5: Data Augmentation on Train Sample

• Resize: Images were resized to match the input size expected by the model.

• Center Crop: A center crop ensured that the main content of the image remained intact
while maintaining uniform input dimensions.

• ToTensor: Like the training dataset, the validation images were converted into PyTorch
tensors to facilitate model compatibility.

• Normalization: The same normalization parameters (mean and standard deviation) as used
in the training dataset were applied to maintain consistency.

For validation, a simpler transformation pipeline was used to standardize the input images:

1 self.val_transforms = Compose(
2 [
3 Resize(size),
4 CenterCrop(size),
5 ToTensor (),
6 normalize ,
7 ]
8 )

A similar visualization is seen for each step performed in the transformation standardization pipeline
for validation data in Figure 6.

Data augmentation during training enhances the model’s ability to generalize, while simpler validation
preprocessing ensures consistent and unbiased evaluation of the model’s performance. This dual
approach strikes a balance between robustness and reliability.
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(a) Original (b) Resize (c) Center Crop

Figure 6: Data Augmentation on Val Sample

2.3.3 Further Improvement: Reducing noise with Segment Anything Model

Most images contain irrelevant background details, such as dirt or leaves from other species, which
can introduce localized noise. To address this during preprocessing, we utilize the Segment Anything
Model (SAM), an efficient tool for predicting object masks from images and input prompts.

Figure 7: Segment Anything Model Pipeline (Source: Section 3.1c https://segment-anything.com/)

Figure 7 illustrates how the Segment Anything Model (SAM) operates. SAM uses an image encoder
to extract image embeddings and a prompt encoder to process various input prompts, including point
coordinates, bounding boxes, and low-resolution masks. The encoded prompts are combined with
image embeddings and passed to a mask decoder, which produces the final object masks.

To enable segmentation guided by natural language prompts, we use GroundingDino in conjunction
with SAM. GroundingDino is a text-to-bounding-box model that allows users to input an image and
a text prompt. It performs zero-shot text-to-bounding-box object detection, effectively identifying
objects of interest in an image based on natural language descriptions. The resulting bounding boxes
serve as input prompts for SAM, which refines them into accurate segmentation masks.

Figure 8 illustrates the image before and after processing with SAM. The inverse mask is blacked out
to eliminate irrelevant features that contribute to noise. In rare instances where no mask is generated,
the entire image is preserved without modifications instead of applying blacking out.
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(a) Original Image I (b) Image Mask I (c) Original Image II (d) Image Mask II

Figure 8: Segmentation Masks obtained using Segment Anything Model (SAM)

3 Model Construction

3.1 Model Selection

Given the high complexity of this classification problem, we aim to conserve computational resources
by avoiding retraining the model from scratch. Instead, we perform fine-tuning on multiple models
separately and integrate their results to complete the experiments.

VISION TRANSFORMER In recent years, the Transformers [20] architecture has demonstrated
remarkable superiority in various vision tasks. Therefore, we plan to use VISION TRANSFORMER
(VIT) [5] as one of our training models. We conducted small-scale fine-tuning experiments on models
with varying sizes and resolutions using limited data.

Our findings show that, for VIT, increasing model size and resolution makes the model have a better
performance. As a result, we choose VIT Large model with resolution 384× 3842 as our pretraining
model.

CONVNEXTV2 According to [12], although TRANSFORMERS perform exceptionally well on a
wide range of tasks, ResNet [8] can be “modernized” to compete with Transformers in vision tasks.
To increase model diversity, we chose CONVNEXTV2 [23], a purely convolution-based model, as
the second pretraining model.

After some small-scale experiments, we found that model size seems to have minimal impact on
performance. However, higher resolution significantly improved the model’s effectiveness. Based on
this, we decided to select the CONVNEXTV2 Base model with resolution 384× 3843 as the final
pretraining model, as it offers a smaller model size with a higher resolution. This choice maximizes
computational efficiency without compromising model performance.

CROPNET We selected CROPNET, using MOBILENETV3 [9] as the base architecture and has been
trained on the iNaturalist and plants subset of ImageNet-21K [4]. This provides the model with a
wealth of knowledge about plant diseases. We further fine-tuned it to achieve better performance.
Additionally, the relatively simple architecture of MOBILENETV3 allowed us to improve training
efficiency.

3.2 Loss Function

Cross Entropy loss has been proven to be an excellent loss function for classification tasks. We use
cross entropy as the initial loss function with minor modifications.

Label Smoothing Considering that this task involves extensive knowledge in botany and medicine,
with high similarity between images of different categories, which often require experts for accurate
identification, we propose using label smoothing [19] to reduce the model’s over-confidence and
improve its calibration [15]. With label smoothing coefficient α, we define the new loss function

2Obtained from https://huggingface.co/google/vit-large-patch16-384.
3Obtained from https://huggingface.co/facebook/convnextv2-base-22k-384.
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L(p̂, y) = −

[
(1− α) log py + α · 1

C

C∑
c=1

log pc

]
(1)

where p̂ is the predicted probabilities for each class, y is the answer, C is the number of classes.

In our actual training process, we have α = 0.06.

Balanced Cross Entropy As mentioned in Figure 2, our training data is imbalanced. Although
downsampling is a reasonable approach to balancing the dataset, this method leads to the loss of a
significant amount of valuable training data. Inspired by [1], we decided to try changing the loss to

L(p̂, y) = −wy ·

[
(1− α) log py + α · 1

C

C∑
i=c

log pc

]
(2)

And the weight vector w is defined as

wc =
n

C ·
∑n

i=1 1yi=c
(3)

where n is the number of training data.

In Equation 2, data with smaller quantities holds a higher weight in the loss calculation, causing the
model to pay more attention to this subset during training. However, the drawback of this approach
is that it no longer reflects the proportion of training data. If the test set and training set share the
same proportions, this modification might actually reduce the model’s performance. This outcome
is reasonable since, in real-world scenarios, the prevalence rates of different diseases vary. This
modification might not be necessary if both the test set and training set are sampled according to
real-world distributions.

We conducted experiments on CONVNEXTV2 using the same parameters. We submitted the trained
model and obtained the results shown in Table 1. We found that balancing was not necessary in the
actual competition. Therefore, we decided to use the combination of Equation 1 and Full Data for all
subsequent experiments.

Loss Function Training Data Public Leaderboard4

Equation 1 Full Data 89.50%
Equation 1 Balanced Data 85.25%
Equation 2 Full Data 85.59%

Table 1: CONVNEXTV2 on different loss functions and training data

3.2.1 Mitigating Overfitting

Doing transformations in Section 2.3.1 has effectively prevented overfitting. Figure 9 clearly shows
that without transformations, the model had a significant overfit after certain steps. The idea is that
transformations make the task harder, so that models can learn more from the training data.

3.2.2 Model Fine-tuning Details

Training Pipeline We built the training pipeline using PyTorch. An abstract class MODEL was
used as the interface, with other models inheriting from this class. By standardizing data loading and
processing, we significantly reduced the time required to integrate individual models. Hugging Face
Trainer [22] and Weights & Biases [21] are integrated for training.

However, the pretraining vector for CROPNET is stored in TensorFlow format. As a result, although it
is still integrated into the pipeline, we used Keras to load and train the model.

4Although we can see the private leaderboard because we participated after the competition, we do not
believe it should be referenced, so we only list the score for public leaderboard.
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Figure 9: Comparasion of VIT Large training process with/without training transformations (first
10k steps only). A significant model overfit can be found without training transformations.

Optimizer We found no evidence that changing the optimizer affected the experimental results.
Therefore, we decided to use AdamW [14] for all models. Detailed optimizer config is listed in
Appendix A.3.

Learning Rate The learning rate indeed affects the model’s performance. We experimented
with various learning rate schedules. We finally decided to use ReduceLROnPlateau for VIT
and CROPNET, CosineAnnealingWarmRestarts [13] for CONVNEXTV2. Although we did not
observe any effect from adjusting the warmup [7] steps, we still applied warmup with 100 steps to
the CONVNEXTV2 and VIT in our final training. We didn’t do warmup on CROPNET. Detailed
parameters is listed in Appendix A.1.

Early Stopping For CONVNEXTV2 and VIT, since we can easily monitor and log in real-time
through Weights & Biases, we decided not to use Early Stopping. However, due to the difficulty
of integrating Weights & Biases with Keras, we can only output logs to the console when training
CROPNET, which makes real-time monitoring inconvenient. Therefore, we are considering using
Early Stopping for CROPNET.

Low-Rank Adaptation (LoRA) When initially selecting models, we needed to conduct numerous
experiments. To enable the simultaneous training of a large number of models with limited GPU
resources, we integrated Low-Rank Adaptation (LoRA) [10]. This allowed us to quickly filter out
underperforming models during the early stages of model selection, saving significant computational
resources. However, during the final training phase, we removed this step, considering that LoRA
might compromise the model’s performance.

DDP and Batch Processing Distributed Data Parallel (DDP) [11] is used for our finalize training.
To save time for training, we used 32× 4 (GPUs) as our batch size.

Model Publishing and Submitting Since the competition requires the submission of inference
code rather than results, we have uploaded all the trained models to Hugging Face, which can be
accessed by this link. As the inference code needs to be offline, we have stored all the parameters in
Kaggle Models for inference.

4 Merging Strategy and Error Analysis

Output Analysis We first analyze the individual model performance of VIT, CROPNET, and
CONVNEXTV2 on the validation set.

Fig 10 presents the confusion matrices for the three models: VIT, CROPNET, and CONVNEXTV2.
Each matrix illustrates how well the respective model classifies the validation dataset. The horizontal
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Figure 10: Confusion Matrix for Three Models

axis represents the label predicted by the model, while the vertical axis indicates the actual results.
Thus, the diagonal elements indicate the correctly classified images, while the off-diagonal elements
represent the misclassified instances.

The evaluation of the three models indicates that the dataset is imbalanced, with class 3 dominating the
data. In addition, all models achieved their highest accuracy in class 3. Conversely, class 0 presents the
greatest challenge, resulting in the lowest accuracy across all models. Among them, CONVNEXTV2
stands out for its overall accuracy, excelling in classes 0, 1, 2, and 3, though CROPNET slightly
performs better in class 4. Notably, CROPNET and VIT demonstrate complementary strengths, with
CROPNET performing better in classes 0, 2, and 4, while VIT shows an advantage in classes 1 and 3.
Therefore, combining these models together could yield better results.

Hard Voting Hard voting, also known as majority voting, involves each model casting a "vote" for
a specific class, with the final outcome determined by the majority of votes from all models. This
method does not take into account the probabilities associated with each model’s prediction. As
demonstrated in Algorithm 1, we implemented hard voting based on the three models discussed previ-
ously. In the event of a tie, we have observed that we will default to the result from CONVNEXTV2
as the final outcome.

Algorithm 1: Hard Voting Ensemble with Tie-Breaker
Data: Input data X , Models CONVNEXTV2, CROPNET, VIT
Result: Final prediction y

1 yconv ← CONVNEXTV2.predict(X);
2 ycrop ← CROPNET.predict(X);
3 yvit ← VIT.predict(X);
4 votes← {yconv, ycrop, yvit};
5 count← count occurrences of each class in votes;
6 if maximum count in count is unique then
7 y ← class with maximum count in count;
8 else
9 y ← yconv ; // Tie-breaker: choose ConvNeXtV2 prediction

10 end
11 return y

As shown in Fig 12a, the hard voting algorithm allowed us to combine the strengths of each individual
model, reducing wrong predictions and enhancing overall accuracy. However, hard voting could also
lead to suboptimal results when models vary significantly in accuracy. For example, if a model is
indecisive between two classes, using its hard vote may lead to an inaccurate result.

Soft Voting In contrast, soft voting addresses this issue by calculating the probability scores from
each model’s predictions. As illustrated in Fig 11, we compared the probability differences in
cumulative distribution between the ground truth and predicted variables. The results indicate that
approximately 20% shows no significant difference, while 40% shows only minor differences. This
suggests that soft voting could also yield favorable results.
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Figure 12: Confusion Matrix for Hard Voting and Soft Voting

We implemented a soft voting algorithm as shown in Algorithm 2. Each model predicts a correspond-
ing probability for each class. Then, we sum these probabilities to calculate an overall probability.
Finally, we select the class with the highest overall probability as the final predicted result.

Algorithm 2: Soft Voting Ensemble
Data: Input data X , Models CONVNEXTV2, CROPNET, VIT with probability outputs
Result: Final prediction y

12 Pconv ← ConvNet.predict_proba(X) ; // Probability output of ConvNet
13 Pcrop ← CropNet.predict_proba(X) ; // Probability output of CropNet
14 Pvit ← ViT.predict_proba(X) ; // Probability output of ViT
15 Ptotal ← Pconv + Pcrop + Pvit y ← argmax(Ptotal) ; // Select class with highest

summed probability
16 return y

Conclusion Fig 12 shows the confusion matrix for both hard and soft voting. Both algorithms
share the common advantage of effectively improving overall accuracy. However, there are slight
differences in performance across specific classes. Compared to soft voting, hard voting yields more
accurate predictions for classes 0 and 4 but performs less effectively for classes 1, 2, and 3. Overall,
soft voting achieves a higher accuracy rate.
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Compared to hard voting, soft voting benefits from the use of more granular probability scores, which
reduces sensitivity to wrong predictions, better handles class imbalances in the original data, and
offers improved generalization ability. Therefore, we have decided to use soft voting as our chosen
method.

Our soft voting method reached 90.79% (rank 17/3901) in the public benchmark.

5 Further Improvement in The Merging Process

Besides Hard Voting and Soft Voting discussed in Section 4, we proposed a voting method called Soft
Voting with Confidence. The general idea is that if a model generates more extreme probabilities, it
should be more confident, and we should assign it greater voting weight. Conversely, if the model’s
results are ambiguous, we should reduce its weight.

We define a confidence c(p) as a function

c : [0, 1]→ [0,∞) (4)

with the following properties:

1. c(0) = c(1) = 1;

2. c is continuous in [0, 1];

3. c is a quasiconvex function, which means:

∀x1, x2, t ∈ [0, 1]3, c(tx1 + (1− t)x2) ≤ max{c(x1), c(x2)} (5)

Property 1 suggests that if the model predicts probability 0 or 1, it should have full confidence.
Property 2 ensures a slight change in prediction won’t affect too much. Property 3 defines the shape
of the confidence function.

We define the voting weight
w(p) = p · c(p) (6)

So the final value is

vtotal(i) =
∑

m∈models

w(pm(i)) · pm(i) =
∑

m∈models

(pm(i))
2 · c(pm(i)) (7)

We selected confidence functions

c(p) =
cosh(2p− 1)

cosh(0)
=

e2p−1 + e−2p+1

e+ e−1
(8)

in our model.

6 Conclusion

This project focuses on developing models for classifying cassava leaf diseases using advanced
machine-learning techniques. It addresses challenges such as data imbalance and noise found in
real-world datasets. By employing data augmentation, we combine traditional data pre-processing
methods with advanced techniques like the Segment Anything Model. Additionally, we evaluated
and integrated results from various model architectures, including VIT, CONVNEXTV2, and CROP-
NET. By utilizing a soft voting algorithm, we were able to enhance classification accuracy and
generalization.

Finally, our model achieved 90.95% (Rank 4/3901, Top 0.10%) on Public Benchmark and 90.60%
(Rank 2/3901, Top 0.05%) on Private Benchmark. Detailed submission results and codes can be
accessed in Appendix B.
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A Training Details

A.1 Learning Rate

Table 2 lists learning rate configs for each model. For VIT and CONVNEXTV2, we have warmup =
500. For CROPNET, we don’t have warmup steps.

Model Learning Rate5 Scheduler Details

VIT 10−4 ReduceLROnPlateau


patience = 10

factor = 0.5

min_lr = 5× 10−6

CONVNEXTV2 10−4 CosineAnnealingWarmRestarts num_cycles = 0.5

CROPNET 10−5 ReduceLROnPlateau


patience = 5

factor = 0.5

min_lr = 10−8

Table 2: Learning Rates Details for Each Models

A.2 LoRA Cofig

In model selection period, we performed low-rank adaptation (LoRA) [10] for all experiments. We
used the same LoRA config for all models to achieve the fairness.

We applied LoRA on all linear layers. Low rank matrices A and B are generated with the same
method as in [2]. The rank matrices are set to 8, and the α parameter for LoRA scaling is set to 8.

A.3 Optimizer Config

As section 3.2.2 mentioned, we found no evidence that changing the optimizer affected the exper-
imental results. So we use AdamW with hyperparameter β1 = 0.9, β2 = 0.999, ϵ = 10−8 for all
training processes.

B Submission Details

We submitted our results to Kaggle.

Our final submission code can be found here.

Our final submission achieved 90.95% (Rank 4/3901, Top 0.10%) on Public Benchmark and 90.60%
(Rank 2/3901, Top 0.05%) on Private Benchmark, shown in Figure 13, 14 and 15.

Figure 13: Submission Results

5Intial learning rate, do not include warmup. So the actual Intial learning rate is Learning Rate
Warmup Steps .
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Figure 14: Public Leaderboard

Figure 15: Private Leaderboard
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