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1 Introduction

This project focuses on the design and implementation of two key components of a database manage-
ment system: storage and indexing.

Our report is structured as follows:

1. First, we illustrate the design of our storage component, where data is stored in blocks on
computer disks.

2. Next, we describe the implementation of our B+ tree and the process of storing the index on
the disk.

3. Finally, we present the statistics and experimental results obtained using our database system.

2 Storage Components

In this section, we illustrate the design of our storage components. We begin by listing all the
components in our design, followed by a demonstration of how each component interacts with the
others.

2.1 Data Components

The data components primarily consist of the following objects:

• BlockData: This object stores the actual data. The data is stored as an array of bytes, with
the size determined by the block size of different computers.

• BlockPtr: This object points to the position of the BlockData. Given a file stream, the
BlockPtr can access a specific range of positions within that file stream.

• DataPtr: This object points to a specific range of positions within a BlockData. In real-time
operations, a BlockPtr is used to manage the loading and storing of the DataPtr.

• Record: A Record is a subclass of the DataPtr. It can access a specific range within the
BlockPtr, corresponding to the size of the record.

• Schema: The Schema manages the field names and data types of a table. A Schema object
is used to determine the number of bytes required to write input data and the number of
bytes needed to read a record when loading from an array of bytes.

During the reading and writing processes, all data is converted into a uniform format, specifically
an array of bytes. For example, an int or float data type is converted into an array of size 4 bytes,
while a bool data type is converted into an array of size 1 byte. During reading, we access only the
BlockPtr or RecordPtr, which points to a specific location in the data. When a specific range is
needed, the corresponding byte array is loaded into memory. A detailed illustration of our storage
format and components is provided in Figure 1.

2.2 Controller Components

We will now illustrate our controller components, which are primarily responsible for managing the
data components described in Section 2.1. The two main controller objects are as follows:

• FileManager: This object manages all BlockPtr instances and the file stream. It handles
read and write operations between the file and the buffer pool.

• DataBaseManager: This object controls the database, using the FileManager to load data
or allocate new memory blocks for data storage. It also oversees the process of reading from
the original text file or from the byte array, returning a pointer to the record position.

When interacting with the user, the DataBaseManager calls the FileManager to allocate new memory
or read from existing memory. During a load() operation, the DataBaseManager initiates an I/O
operation for one block, as detailed in Figure 2.
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Figure 1: Illustration of the storage components design in our project. All the data are converted into
array of Byte and store in the disk. Only pointers that points to the offset position will be stored in
memory.
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Figure 2: The controller components in how user interactive with the database.

2.3 Buffer Pool

We use the buffer pool to manage disk read and write operations uniformly. All database read and
write operations must go through the buffer pool.

A buffer pool P consists of the following properties:

1. A hash tableHP in memory, using the disk offset as the key. HP(o) represents the block
data corresponding to the disk offset o.

2. A Least Recently Used (LRU) queue QP that tracks the access order of frames, with the
least recently used page at the head. This queue implements the page replacement policy in
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Figure 3: Design of our buffer pool. BlockData are shared with shared_ptr or weak_ptr so that
no duplicate BlockData are constructed. During update, the data in the buffer pool will be override
and the index and priority will be update

the buffer pool. If the page is replaced in the memory, the block data in the buffer where the
old page was stored is expired; when I/O is requested to access the data block corresponding
to this buffer, the data block has to be loaded from the memory to this buffer.

3. Each frame in the buffer pool is associated with a dirty bit D. If D = 1, the frame has been
modified in memory but not yet written back to disk. If D = 0, the frame is synchronized
with the corresponding block on disk.

During actual I/O operations, the FileManager manages the buffer and reuses it if the block is
already cached in the buffer pool. If the buffer pool is full, it is updated using the Least Recently
Used (LRU) policy described above. The structure of our buffer pool is illustrated in Figure 3, where
each BlockData is shared using std::shared_ptr or std::weak_ptr to allow resource sharing.
During updates, the data in the buffer is modified accordingly, and the pointers are updated to reflect
the changes.

The entire structure simulates the LRU process, achieving O(1) time complexity for each fetch
operation.

3 Index Components

3.1 B-Tree Structures

We use a B+ tree as the implementation of the B-tree. Instead of using n as a constraint, we adopted t
as the minimum degree of the B+ tree. So every node can have n = 2t− 1 values and 2t pointers.
The formal definition of our B+ tree is presented in Appendix A.

In the code, we created an abstract class BPlusTreeNode, with the classes BPlusTreeLeafNode
and BPlusTreeInternalNode inheriting from it. This abstract class can have various abstract
functions such as insert, search, delete, and more. The root of the B+ tree is a BPlusTreeNode.
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3.2 The Bulk Loading Algorithm

The bulk loading algorithm for constructing a B+ tree with a sorted sequence of records requires
O(n) memory and O(n) disk operations, where n is the number of records. If the record sequence is
unsorted, an additional O(n log n) memory time is needed for sorting.

We build the B+ tree layer-by-layer recursively. The BULKLOADING function takes in a vector of
pointers to records stored on disk, denoted asR. It returns a BPlusTreeNode object.

Algorithm 1 BULKLOADING

R ← input vector
n← number of records
SORT R by its index
L ← vector of BPlusTreeLeafNode, means the leaf layer
ℓ← ∅ as the new leaf node
for r inR do

if nℓ ≥ t and number of records remains ≥ t then
ℓnew ← ∅ as a new leaf node
NEXT(ℓ)← ℓnew
Append ℓ to L
ℓ← ℓnew

end if
end for
return BULKLOADINGUPPERLAYER(L)

Function BULKLOADINGUPPERLAYER is a helper method for BULKLOADING, which takes in a
vector layer of BPlusTreeNode, and returns the root of the B+ tree.

Algorithm 2 BULKLOADINGUPPERLAYER

O ← input vector
n← number of nodes
if n = 1 then

return FIRST(L)
end if
U ← vector of BPlusTreeInternalNode, means the leaf layer
u← ∅ as the new internal node of the upper layer
for o in O do

if nℓ ≥ t and number of nodes remains ≥ t then
Append u to U
u← ∅ as a new internal node of the upper layer

end if
end for
return BULKLOADINGUPPERLAYER(U )

3.3 Range Query on B-Tree

RANGEQUERY is an abstract method for BPlusTreeNode. RANGEQUERY(o, ℓ, r,R) means that
the currently we are in node o, we want to query the records between [ℓ, r], and the results should be
saved inR. In real coding situations, we use dynamically to implement it. Algorithm 3 shows how
the algorithm works.

4 Implementation and Experiments

In this section, we will show our details on our implementations and report the result as required
from the 3 tasks.
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Algorithm 3 RANGEQUERY(o, ℓ, r,R)

if ISLEAF(o) then
for i ∈ [0, n) do

if k(i)o ≥ ℓ then
continue

end if
if k(i)o > r then

return
end if

end for
RANGEQUERY(NEXT(o), ℓ, r,R)

else
BINARYSEARCH to find the first i with k

(i)
o ≥ ℓ

if cannot find i then
RANGEQUERY

(
s
(ns+1)
o , ℓ, r,R

)
else

RANGEQUERY
(
s
(i)
o , ℓ, r,R

)
end if

end if

4.1 Implementation Details

This project is implemented in pure C++ using minimum version 17. The block size is determined
based on the system settings and statistics of the running machine. Therefore, different machines
may result in varying block sizes. For simplicity, we use a block size of 4096, which is the default
setting on most machines, throughout the rest of the paper unless otherwise specified.

4.2 Task 1

Column Name Data Type Row Size (Bytes)

GAME_DATE_EST DATE 10
TEAM_ID_home VARCHAR(10) 10
PTS_home INT 4
FG_PCT_home FLOAT32 4
FT_PCT_home FLOAT32 4
FG3_PCT_home FLOAT32 4
AST_home INT 4
REB_home INT 4
HOME_TEAM_WINS BOOLEAN 1

Total 45

Table 1: Fields statistics inside a record

File Num. of lines 26651

Record
Num. of records 26651
Size (Bytes) 45

Block
Num. of blocks 293
Size (Bytes) 4096

Table 2: The size of a record; The num-
ber of records; The number of records
stored in a block; The number of blocks
for storing the data

Record In our database system, and in the provided games.txt file, a record consists of an array of
45 bytes. A detailed explanation of how we chose the data types and corresponding row sizes for
each field is provided in Table 1. Examples of the converted byte arrays for different data types can
be found in Figure 1. Since there are 26651 lines in the txt file, there will be 26651 records in the
database.

Block Our block size is set to the default value of 4096 bytes. Therefore, each block can store⌊
4096
45

⌋
= 91 records. To store all the records in our database, we will need

⌈
26651
91

⌉
= 293 blocks.

Database File A database file in our system is a binary file named with the extension .db. It
contains multiple blocks used to store the database’s data.
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4.3 Task 2

Degree t In our B+ tree structure, degree (t) is the minimum number of subtrees of an internal node.
In our B+ tree, the degree is 102.

Statistic Value

Parameter n 203

Total number of nodes 266

Number of levels 3

Content of root node 3 keys from the file

Table 3: the parameter n of the B+ tree; the number of nodes of the B+ tree; the number of levels of
the B+ tree; the content of the root node

Parameter n The parameter n is restricted to be an odd integer, which refers to the maximum
number of keys that can be stored in a node; and it is equal to two times degree minus 1, which is
2× 102− 1 = 203.

Number of Nodes There are 26, 651 records. Since each leaf node must store at least 102 keys, the
minimum number of leaf nodes is

⌈
26651
102

⌉
= 262, So there will be 262 leaf nodes in this case. Each

internal node can have at least 102 pointers (since internal nodes must have at least t = 102 children).
Therefore, the number of internal nodes at the first level is

⌈
262
102

⌉
= 3. Since there are only 3 internal

nodes in the first level, the second level will contain 1 root node (because the root can store at least
101 keys and have up to 102 children). Therefore, totally there are 262 + 3 + 1 = 266 nodes.

Number of levels in the B+ tree For leaf level there are 262 leaf nodes; at first internal level there
are 3 internal nodes; at root Level there are 1 root node. Therefore, the B+ tree has 3 levels.

Content of the root node (only the keys) The root node will contain the first keys from each of its
3 children (the internal nodes). Since there are only 3 internal nodes, the root will contain 3 keys that
guide the search process to the appropriate internal node.

4.4 Task 3

Buffer Size TIME (µs) TIME (ms) IO (Index Block) IO (Data Block)

1 39774 39 66 6812
100 27891 27 57 4003
250 13469 13 41 838
500 9351 9 0 0

Table 4: The number of IO and time for different buffer
sizes using B+ tree. Our indexes are built in a non-
clustered order and thus may access a data block multi-
ple times and getting the result

Method IO (Index) IO (Data) Time (ms)

Linear Scan 0 293 22
B+ tree 66 6812 39
B+ tree w. cache 41 838 13

Table 5: Comparison with different
methods: Linear Scan, B+ tree, B+ tree
with cache. The cache of the B+ tree is
set to be 250 pages.

We will now present the statistics required for Task 3. The results were obtained by running the
system with different buffer sizes, and the outcomes are summarized in Tables 4 and 5.

Index Node Access Without using a buffer*, the number of I/O operations for accessing index
blocks is 66, which is approximately equal to ⌊ 6902102 ⌋ = 67, where 6902 is the number of records that
satisfy the query conditions. As the buffer size increases, the number of I/O operations for accessing

*The minimum buffer size for our program is 1 since we always update our buffer after reading one block.
However, in this scenario, this buffer would not have any effect. Thus, we consider the case when buffer size is 1
as no buffer.
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Figure 4: Exploring different buffer size

the index decreases gradually, as portions of the index are stored in the buffer during the building
phase.

Data Block Access Since we use a dense non-clustered index, many data blocks are accessed
multiple times because the records are not stored sequentially, the number of I/O operations for
accessing data blocks is 6812, which is much greater than using linear scan. The high I/O in data
block access results in the runtime of the B+ tree being longer than that of the range query. This issue
can be mitigated by increasing the buffer size, as the linear scan cannot fully utilize the buffer, and
the B+ tree will have a shorter runtime with an increased buffer size.

Average of “FG3_PCT_home” for the Records The average “FG3_PCT_home” value retrieved from
the returned records is 0.420801. We verified this result using a simple Python program, which
returned a value of 0.4208015. Thus, we confirm that the query result is accurate.

Running Time The algorithm’s running time without using a buffer is approximately 39 ms. As
the buffer size increases, the running time decreases to around 9 ms. Detailed statistics can be found
in Table 4.

Data Blocks Accessed by Linear Scan The number of data blocks accessed by a brute-force linear
scan is constant at

⌈
26651
102

⌉
= 293.

Running Time of Linear Scan The running time for the linear scan is constant, taking approxi-
mately 22 ms. A detail comparison can be found in Figure 4c
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5 Conclusion

In this report, we present our design of our storage and index components for the database system
in Sections 2 and 3. We then report all of our statistics and experiment results in Section 4 that is
required from the manual.

References
[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2022.
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A Formal Definition of Our B Plus Tree

Our B+ tree is constructed following the foundational definition of B-trees as given in [1], with
key modifications to accommodate the structure and search needs of our data storage and indexing
system.

The primary difference between our B+ tree and the one in [1] is that in our implementation is that
only the leaf nodes store the actual data records, while internal nodes store only the keys.

A.1 Node Structure

Each node x in the B+ tree has the following properties:

1. Number of Keys: nx, representing the number of keys currently stored in node x. For
internal nodes, these keys help guide the search by partitioning the search space.

2. Keys: The nx keys, k(1)x , k
(2)
x , · · · , k(nx)

x , stored in monotonically increasing order, such
that k(1)x < k

(2)
x < · · · < k

(nx)
x ,

3. Leaf Indicator: ℓx, a boolean value that is true if x is a leaf and false if x is an internal
node.

4. Pointers: Each node, depending on weather it is an internal or leaf node, contains a specific
number of pointers (described in the next sections) that link to either child nodes or data
blocks

A.2 Internal Nodes

Each internal node x contains nx + 1 pointers, denoted s
(1)
x , s

(2)
x , · · · , s(nx+1)

x , which point to its
child nodes. These pointers separate the key space such that each pointer directs the search towards
the subtree containing the relevant keys.

• Pointers as Navigational Aids: The internal nodes do not store actual data records but only
serve as guides for navigating to the correct leaf node or subtree where the data is stored.

• Key-based Navigation: The keys in an internal node are used to define search boundaries.
If a search for a key k lands in node x, then the key is passed to the appropriate child pointer
based on the relationship:

k1 < k(1)x ≤ k2 < k(2)x ≤ · · · < k(nx)
x ≤ knx+1

where s
(i)
x leads to the subtree containing all keys in the range defined by the keys in the

parent node.

A.3 Leaf Nodes

Each leaf node x contains nx + 1 pointers, denoted s
(1)
x , s

(2)
x , · · · , s(nx+1)

x , which are structured
differently from the internal node pointers:

1. For 1 ≤ i ≤ nx,each pointer s(i)x points directly to the data record corresponding to the key
k
(i)
x .

2. The last pointer, s(nx+1)
x points to the next leaf node in the B+ tree’s depth-first search

(DFS) order. This allows for efficient range queries by following the chain of leaf nodes:

• If x is the last leaf node, then s(nx+1) is ∅, indicating the end of the tree.

A.4 Key Separation in Subtrees

The keys k(i)x separate the ranges of keys stored in each subtree. For any key subtree, ki is stored in
the subtree with root s(i)x , the following relationship holds:

k1 < k(1)x ≤ k2 < k(2)x ≤ · · · < k(nx)
x ≤ knx+1
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This property ensures that a search operation is guided down the correct subtree by comparing the
key against the keys in the parent node.

A.5 Leaf Depth

All leaf nodes in the B+ tree are located at the same depth, equal to the height hT of the tree. This
ensures balanced access times for all records, as every search or insertion operation requires traversing
the same number of levels to reach a leaf node.

A.6 Key Boundaries and Node Capacity

Each node in the B+ tree has lower and upper bounds on the number of keys it can hold, based on the
integer parameter t ≥ 2:

1. Lower Bound:
• Any node(except the root) must contain at least t− 1 keys.
• Each internal node, therefore, has at least t children.
• The root node may contain fewer than t− 1 keys but must contain at least one key if

the tree is non-empty.
2. Upper Bound:

• Any node can hold a maximum of 2t− 1.
• An internal node can have up to 2t children, allowing for balanced growth as new

records are inserted.

A.7 Operations on the B+ Tree

• Search: To locate a record, the search process navigates from the root to the appropriate
leaf node, using the keys in internal nodes to direct the search path. Once the correct leaf
node is located, the corresponding data is fetched via the leaf node’s pointers.

• Insertion: Insertion occurs by first finding the correct leaf node for the key. If the leaf node
has space for additional keys, the new key and data record are added. If the leaf is full, it is
split, and a new key is promoted to the parent node. If the parent node also becomes full,
the splitting and promotion process continues recursively, potentially resulting in the tree
growing in height.

• Range Queries: Range queries are highly efficient in the B+ tree due to the linked list
structure of the leaf nodes. Once the range’s starting key is located, the query can traverse
the linked list of leaf nodes to retrieve all records within the specified range.
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