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1 Introduction

In this study, we investigate factors affecting Annual Average Daily Traffic (AADT) on road section,
using a dataset comprising five variables shown in Table 1. We demonstrate our overall pipeline in
Figure 1. After inputting our data, we first observe its distribution. To address the skewness in some
of the data, we applied transformations to the data.

After that, we conduct Single Linear Regression (SLR) analysis for x1 to x4. We analyze and explain
the influence of each variable on the response variable in detail through this approach. In parallel, we
also perform Multiple Linear Regression (MLR) analysis to get the more precise model. For variables
found to be significant, we proceed to use them for prediction.

The full code can be reached in https://pufanyi.github.io/MH3510-Project/, we also listed
some key code snips in Appendix A.

2 Dataset Overview and Representation

The dataset is constituted of 5 columns, with meaning shown in Table 1. And Figure 2 illustrates the
distributions of all variables.

In Figure 2, it is clear that y is left-skewed. We consider setting

y′ = log2 y (1)

to fix the skewness of the response variable. Equation

In further analysis, we will use y′ as the response variable. To predict the value of y, we can easily do
inverse transformation y = exp

√
y′ to get the result.

Similarly, to fix the skewness of x1, transformations are performed to x1 with

x′
1 =

√
x1 (2)

Figure 3 shows the distribution of y′ and x1, it can be seen that the distributions of y′ and x′
1 are

relatively uniform compared with the original y and x1.

Although x2 and x3 also have some skewness, considering that they are integers† with a small range
in the dataset, applying a transformation may not be useful. We have decided not to transform them
for now.

3 Single Variable Regression Analysis

3.1 Population v.s. AADT

According to common sense, cities with larger populations should have more congested traffic. We
attempt to use data to verify this hypothesis.

3.1.1 Model Overview

By transforming x1 to
√
x1 and y to log2 y, we ensured that potential non-linear relationships were

better captured in the model.

We build a single linear regression model:

y′ = β
(1)
0 + β

(1)
1 x′

1 + ϵ, ϵ ∼ N (0, σ2
1) (3)

The model is fitted with the data in figure , with{
β
(1)
0 ≈ 53.49

β
(1)
1 ≈ 0.064

(4)

*x4 = 1 means access control; x4 = 2 means no access control
†Although x3 is defined as a continuous variable, it consists entirely of integers in the dataset.
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Figure 1: An overview of our pipeline.
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Figure 2: Distribution of the Variables

This finding implies that larger county populations are associated with higher average annual daily
traffic, which aligns with real-world expectations where more populated counties tend to have higher
traffic volumes.

3.1.2 Residuals Analysis

We draw the residuals plot and QQ-plot in Figure 5 to provide further insights into the model’s
adequacy.

Residuals Plot The residual plot in Figure 5 shows a generally even distribution of residuals around
zero, though there are some signs of non-constant variance. This pattern might indicate that variability
in traffic increases with larger predicted values, potentially due to factors such as urban infrastructure
or public transport usage that could influence traffic in larger counties.
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Columns Meaning Type
y Annual average daily traffic (AADT) Continuous
x1 Population of county in which road section in located Discrete
x2 Number of lanes in road section Discrete
x3 width of road section (in feet) Continuous
x4 Whether there is control of access to road section* Binary

Table 1: Overview of the Variables

QQ-Plot The QQ-plot of residuals shows that the residuals mostly follow a normal distribution,
with minor deviations at the tails, suggesting that while the model performs well overall, there might
be outliers or specific population segments where the prediction is less accurate.

3.1.3 Residual Statistics

ANOVA Table We calculate the ANOVA table in Table 2.

Source df SS MS F
Regression 1 SSR = 43471 MSReg = SSR = 43471

F =
MSReg

s2 ≈ 102.75Residual n− 2 = 119 SSE = 53916 s2 = SSE
n−2 = 423

Total n− 1 = 120 Syy = 97387

Table 2: ANOVA table for the population with AADT.

Since F value is in a F distribution:

F =
MSReg

s2
∼ F1,n−2 (5)

We can build H0: β1 = 0 with H1: β1 ̸= 0. And do F-test by calculating the p value:

p = P (F1,199 > F ) < 2× 10−16 (6)

The p value is small enough for us to reject H0 and conclude that the population actually has a
influence to AADT.

R2 Statistic The R2 statistic is calculated as

R2 =
SSR

Syy
≈ 0.4634 (7)

This means that while there is some relation between population and AADT, there are other effectors
that determine the AADT.

3.2 Number of Lanes v.s. AADT

3.2.1 Model Overview

The scatter plot Figure 6 shows how AADT changes with the number of lanes. Each point represents
a specific road section, with:

• The x-axis representing the number of lanes.
• The y-axis representing the AADT data after transformation.

In this plot, we also include a trendline to indicate the general pattern in the data.

A positive slope in the trendline has been observed in the plot, which means that as the number of
lanes increases, AADT tends to increase as well. This aligns with common sense: adding lanes
generally allows a road to support more vehicles, which increases its traffic capacity.
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Figure 7: Residuals of the model ŷ′ = β̂
(2)
0 + β̂

(2)
1 x2

We construct the linear model for the responsible variable y′ and predicted variable x2:

y′ = β
(2)
0 + β

(2)
1 x2 + ϵ, ϵ ∼ N (0, σ2

2) (8)

We fitted the model with the data, shown as the red line in Figure 6:{
β̂
(2)
0 ≈ 25.304

β̂
(2)
1 ≈ 17.718

(9)

Intercept When the number of lanes is zero, the model predicts y′ of approximately 25.3. While
this might not be meaningful practically (since we rarely see roads with zero lanes), it serves as a
baseline.

Slope for x2 For each additional lane, the model predicts an increase of about 17.7 in y′. This
means adding lanes has a significant positive effect on traffic capacity.

Significance The very low p-value
(
< 2× 10−16

)
for the number of lanes indicates that this

relationship is statistically significant, implying that the number of lanes is an important factor in
determining AADT.

3.2.2 Residual Analysis

Residuals vs Fitted Plot Figure 7 examines how well the linear model predicts AADT based on the
number of lanes. If the residuals (the differences between actual and predicted AADT) are scattered
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randomly around the zero line, it indicates that the number of lanes effectively explains variations in
AADT. In practical terms, this would mean that road sections with different lane counts generally
show predictable changes in traffic volume, and our model captures this relationship well. However,
if a pattern appears in the residuals, such as a consistent underestimation or overestimation of AADT
for certain lane counts, it might suggest that factors beyond lane count (e.g., location, road type) are
also influencing traffic volume, indicating that our model may need additional variables to improve
accuracy.

Normal Q-Q Plot Refer to Figure 7 again, it assesses whether the residuals are normally distributed,
which is an assumption for linear regression. A normal distribution of residuals suggests that the
relationship between lane count and AADT is generally well-captured by the linear model. If the
points fall along a straight line in the Q-Q plot, it indicates that the model’s errors are random and
unbiased, meaning our predictions are reasonably reliable across different lane counts. However,
significant deviations from this line might indicate that the relationship between lane count and
AADT isn’t fully linear or that other factors are affecting traffic volume in ways the model doesn’t
capture, possibly warranting a more complex or adjusted model.

3.2.3 Residual Statistics

ANOVA Table We calculate the ANOVA table in Table 3.

Source df SS MS F
Regression 1 SSR = 43471 MSReg = SSR = 43471

F =
MSReg

s2 ≈ 102.75Residual n− 2 = 119 SSE = 53916 s2 = SSE
n−2 = 423

Total n− 1 = 120 Syy = 97387

Table 3: ANOVA table for the population with AADT.

According to Equation 5, we can build H0: β1 = 0 with H1: β1 ̸= 0. And do F-test by calculating
the p value:

p = P (F1,199 > F ) < 2× 10−16 (10)

The p value is small enough for us to reject H0 and conclude that the population actually has a
influence to AADT.

R2 Statistic The R2 statistic is calculated as

R2 =
SSR

Syy
≈ 0.4634 (11)

This means that while there is some relation between population and AADT, there are other effectors
that determine the AADT.

3.2.4 Summary

This analysis shows that the number of lanes has a strong, positive effect on AADT. This makes
intuitive sense, as wider roads with more lanes are better suited to handle larger volumes of traffic.
The linear model and diagnostic plots suggest that the relationship is well captured by our model,
with residuals generally behaving as expected.

In summary, as we add more lanes to a road, we can expect an increase in daily traffic capacity, which
matches our common-sense understanding of road infrastructure and traffic flow.

3.3 Road Width v.s. AADT

3.3.1 Model Overview

We build the linear regression model

y′ = β
(3)
0 + β

(3)
1 x3 + ϵ, ϵ ∼ N (0, σ2

3) (12)
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The scatter plot in Figure 8 shows the relationship between Annual Average Daily Traffic (AADT)
and the width of road sections (in feet). Each point represents a specific road section, with: The
x-axis represents the width of the road section in feet x3. The y-axis represents the AADT.

In this plot, a trendline has been added to indicate the general pattern in the data. Although the
trendline suggests a positive slope, indicating that as the road width increases, AADT tends to
increase, this relationship is not statistically significant, as shown by the linear model.

• Intercept: 71.49, which suggests that at a hypothetical width of zero, the model would
predict an AADT of approximately 71.5, though this does not have practical meaning.

• Slope for x3: 0.28, indicating a predicted increase in AADT of approximately 0.28 for each
additional foot in road width. However, this effect is not statistically significant (p-value =
0.207), suggesting that road width does not significantly impact AADT in this model.

3.3.2 Residual Statistics

ANOVA Table We calculate the ANOVA table in Table 4

Source df SS MS F
Regression 1 SSR = 1254 MSReg = SSR = 1254.46

F =
MSReg

s2 ≈ 1.6127Residual n− 2 = 119 SSE = 92564 s2 = SSE
n−2 = 777.85

Total n− 1 = 120 Syy = 93818

Table 4: ANOVA table for the population with AADT.

R2 Statistic The R2 statistic is calculated as

R2 =
SSR

Syy
≈ 0.013 (13)

implies that road width explains only about 1.3% of the variation in AADT, suggesting that other
factors are more influential.

3.3.3 Summary

This analysis suggests that the width of a road section has a weak and statistically insignificant
relationship with AADT. While wider roads generally allow for higher traffic volumes, this model
does not capture that effect effectively.
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Figure 9: Distribution of AADT over whether to control access.

3.4 Whether to Control Access v.s. AADT

Controlling access to the road section is one of the important methods for improving traffic flow.
In this chapter, we explore whether this approach can effectively increase the annual average daily
traffic.

We divide the data into two categories: the first category consists of data where control measures are
implemented, and the second category consists of data without control measures. The distribution of
these 2 categories is shown in Figure 9.

We then establish a linear model:

y′ij = θi + ϵij , i ∈ {1, 2}, j ∈ {1, · · · , ni} , ϵij ∼ N
(
0, σ2

4

)
(14)

We can fit the model by {
θ̂1 = y1· ≈ 114.10

θ̂2 = y2· ≈ 70.48
(15)

We are interested in whether these two categories have a significant difference. So we build H0:
θ1 = θ2 versus H1: θ1 ̸= θ2, and we can build the ANOVA table, shown in Table 5.

Source df SS MS F

Between groups k − 1 = 1 SST = 39903 MST = SST
k−1 = 39903

F = MST
MSE ≈ 88.07

Within groups n− k = 119 SSE = 53916 MSE = SSE
n−k = 453

Total n− 1 = 120 Syy = 93819

Table 5: ANOVA table for whether to control access.

As
F =

MST

MSE
∼ F1,119 (16)

We can calculate p-value by:

p = P (F1,199 > F ) ≈ 5.37× 10−16 (17)

This is a quite small number, so we can conclude that there is a significant difference by controlling
the access to the road section.
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4 Multiple Linear Regression

4.1 Multiple Linear Regression with Full Dataset

As x4 is a classification variable, we create a dummy variable

x′
4 = 2− x4 (18)

So that x4 = 1 means we select the first class (control) and x4 = 0 means we select the second class.

So we can represent data by:

x =


1
x′
1

x2

x3

x′
4

 =


1√
x1

x2

x3

2− x4

 , X =


x1

⊤

x2
⊤

...
xn

⊤

 =


1 x′

1,1 . . . x′
1,4

1 x′
2,1 . . . x′

2,4
...

...
. . .

...
1 x′

n,1 . . . x′
n,4

 (19)

And build the linear regression model for the full dataset:

log2 y = β0 + β1
√
x1 + β2x2 + β3x3 + β4(2− x4) + ϵ = x⊤β + ϵ (20)

We fit the model by

β̂ = (X⊤X)−1Xy′ ≈


27.26
0.036
11.07
0.019
−13.24

 (21)

4.2 Adjusted Model

Figure 10 shows the model prediction and residuals. We can find that the σ of residuals are dependent
with y′, so we need to adjust the transformation to make σ a constant.

We succeed in the goal by doing the transformation

y′ = log4 y (22)

So the model becomes

log4 y = β0 + β1
√
x1 + β2x2 + β3x3 + β4(2− x4) + ϵ (23)

Figure 11 shows residuals after adjustment. We can see that the σ is mostly the same for each y.

4.3 Adequacy Checking

To check the adequacy of the model, we build an ANOVA / ANCOVA table for each variable. Shown
in Table 6. We can find that x′

1, x2, x
′
4 have information with y, while x3 can be removed as it have a

great p-value.

Source DF RSS F p-value

Reduce x1 117 679542372 99.815 < 2.2× 10−16

Reduce x2 117 680342805 100.07 < 2.2× 10−16

Reduce x3 117 365429973 0.0562 0.8129
Reduce x4 117 459976649 30.083 2.457× 10−7

Full Model 116 365252858

Table 6: ANOVA / ANCOVA table for adequacy checking.

So we decide to reduce x3 from our model.
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Figure 10: Regression model and residuals for the full model
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Figure 11: Regression model and residuals for the full model
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Figure 12: Predictions and residuals for the finalised model

4.4 Model Finalization

So our final multiple linear regression model is

log4 y = β0 + β1
√
x1 + β2x2 + β4(2− x4) + ϵ (24)

Figure 12 shows the predictions and residuals for the finalised model. We can observed that most of
the residuals lie in the range (−3000, 3000).

5 Prediction

5.1 Point Estimation

From Equation 24, we can get:

ŷ = exp
4

√
β̂0 + β̂1

√
x1 + β̂2x2 + β̂4(2− x4) (25)

Substituting by 
x1 = 50000

x2 = 3

x3 = 60

x4 = 2

(26)
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We can get
ŷ ≈ 27379.73 (27)

5.2 Interval Estimation

We can get the 90% confidence interval of ŷ′:

(l′, r′) = (9329.20, 12468.89) (28)

So after doing the inverse function of Equation 22:

y = exp 4
√
y′ (29)

We can get the 90% confidence interval:

(l, r) = (18544.14, 38836.96) (30)

6 Conclusion

Our single variable regression analysis showed that population size and the number of lanes sig-
nificantly predict AADT, consistent with expectations that larger populations and additional lanes
increase traffic capacity. However, road width was found to have a weak and statistically insignificant
relationship with AADT. Access control demonstrated a substantial impact on traffic, as shown
through a two-group comparison where controlled access increased AADT.

In the multiple linear regression model, we incorporated these significant factors, refining our
understanding of how they collectively influence traffic patterns. This comprehensive approach
provides a clearer picture of the primary determinants of traffic volume and informs infrastructure
planning decisions.

And finally, we provide our prediction in Equation 27 and 30.
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A Code Snips

The full code can be accessed in https://pufanyi.github.io/MH3510-Project/, here we
listed some of the code snips.

A.1 Data Loading

1 file <- "../assets/aadt.txt"
2 data_raw <- read.table(file , col.names = columns)
3 data_ori <- data_raw[, c("Y", "X1", "X2", "X3", "X4")]

A.2 Data Transformation

1 y_prime <- log(data$Y)^2
2 x1_prime <- sqrt(data$X1)
3 # ... Analysis code here
4 data$Y <- log(data$Y)^2

A.3 Single Linear Regression and Analysis

We take x1 as an example

1 slr_X1 <- lm(y_prime ~ x1_prime , data = data)
2 summary(slr_X1)
3 anova(slr_X1)

A.4 Multiple Linear Regression

1 data$Y <- data$Y^2 # Further transformation
2 data$X4 <- 2 - data$X4 # Dummy variable
3
4 mlr <- lm(Y ~ X1 + X2 + X3 + X4, data = data)
5 summary(mlr)
6
7 # check adequecy
8 eliminate_x1_mlr <- lm(Y ~ X2 + X3 + X4, data = data)
9 anova(eliminate_x1_mlr , mlr)

10 # ... check other variables
11
12 # reduce model
13 mlr <- eliminate_x3_mlr

A.5 Estimation

1 x1 <- 50000
2 x2 <- 3
3 x3 <- 60
4 x4 <- 2
5
6 # transformation
7 x1 <- sqrt(x1)
8 x4 <- 2 - x4
9

10 # prediction
11 input <- data.frame(X1 = x1, X2 = x2 , X3 = x3 , X4 = x4)

13
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12 y_hat <- predict(mlr , input)
13
14 # transform back
15 y_hat <- exp(y_hat^(1 / 4))
16
17 # interval estimation
18 alpha <- 0.1
19 interval <- predict(mlr , input , interval = "confidence",
20 level = 1 - alpha)
21
22 # transform back
23 l <- exp(interval [2]^(1 / 4))
24 r <- exp(interval [3]^(1 / 4))
25 print(paste("(", l, ", ", r, ")"))
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