
Page 1 of 12

SC2002 OBJECT ORIENTED DESIGN & PROGRAMMING

FINAL YEAR PROJECT MANAGEMENT SYSTEM

Report of Project Structure Design & Functionality

AY22/23 Sem 2 | A50, Group 6

NAME MATRICULATION NUMBER

Pu Fanyi U2220175K

Jiang Jinyi U2220259H

Jin Qingyang U2220239A

Soo Ying Xi U2220021D

Project Demonstration Video: https://youtu.be/8FikWzfHlLA

Project Main Page: https://pufanyi.github.io/FYPMS/

GitHub Main Page: https://github.com/pufanyi/FYPMS

Project Document: https://pufanyi.github.io/FYPMS/docs

Declaration of Original Work for SC/CE/CZ2002 Assignment

We hereby declare that the attached group assignment has been researched, undertaken, completed, and

submitted as a collective effort by the group members listed below.

We have honoured the principles of academic integrity and have upheld the Student Code of Academic

Conduct in the completion of this work.

We understand that if plagiarism is found in the assignment, then lower marks or no marks will be

awarded for the assessed work. In addition, disciplinary actions may be taken.

NAME COURSE LAB GROUP SIGNATURE

Pu Fanyi SC2002 A50

Jiang Jinyi SC2002 A50

Jin Qingyang SC2002 A50

Soo Ying Xi SC2002 A50

https://youtu.be/8FikWzfHlLA
https://pufanyi.github.io/FYPMS/
https://github.com/pufanyi/FYPMS
https://pufanyi.github.io/FYPMS/docs

Page 2 of 12

1 DESIGN CONSIDERATIONS

FYPMS (Final Year Project Management System) is a Java console application designed with a focus on

reusability, extensibility, and maintainability. It efficiently manages final year project settings and

accommodates different user types and their requirements, allowing for easy upgrades and future

development.

1.1 DESIGN APPROACH
The FYPMS was designed with a focus on high cohesion and loose coupling, with classes separated into

three categories: controllers, boundaries, and entities. Controllers include “Project Manager”, “Request

Manager”, boundaries include “Student Main Page”, “Coordinator Main Page”, entities include

“Students”, “Projects” etc. When the user is using the system, he/she interacts with the boundaries, which

then call the controller to perform requested operations such as making changes to the entity or retrieve

information from entity to display etc. Each of these categories works together to complete our system while

ensuring the dependency on each other is minimized. As such, our system is highly flexible, extendable and

easy to maintain. Minimum effort is required when extending our system, for example when a new function

in the system is introduced.

1.2 HIGHLIGHTS OF SOME DESIGNS

Reflection: The interface Model uses reflection to convert between classes and strings, enabling dynamic

handling of model data without manual mapping.

Generic Repository Class: Repository<Model> class with generics allows for flexible data storage and

retrieval for any model type, reducing duplication and improving maintainability.

SHA-3 Password Encryption: User passwords are encrypted using the SHA-3 algorithm for enhanced

security.

Batch CSV Data Import: The system supports batch importing of initial data from CSV files, making it

convenient to process large datasets in chunks.

Factory Design Pattern: The factory pattern is used to quickly generate requests based on different

requirements, enhancing system scalability and adaptability.

JUnit 5: We used JUnit 5 to test our classes, it helps to ensure the correctness and robustness of our code.

1.3 APPLIED DESIGN PRINCIPLE

1.3.1 Single Responsibility Principle (SRP)

The Single Responsibility Principle (SRP) recommends that each class should have a clear and singular

responsibility, avoiding unrelated tasks. By adhering to the SRP, we can minimize the ripple effect of changes,

Page 3 of 12

simplifying the process of modifying, testing, and reusing code, resulting in more maintainable and robust

software design.

1.3.2 Open/Closed Principle (OCP)

The Open/Closed Principle (OCP) states that classes should be open for extension but closed for modification,

allowing for the addition of new functionality without changing existing code. OCP can be implemented

through abstraction, inheritance, and polymorphism.

In our project, we apply OCP by creating an abstract class "Repository<Model>" that can be extended to

create different types of Repositories such as "ProjectRepository" and "RequestRepository." Each subclass

overrides the "getFilePath()" method to allow for easy extension of the Repository system. For requests, we

use an interface "Request" to derive different types of requests such as "StudentRegistrationRequest" and

"StudentDeregistrationRequest." Each subclass overrides the "get" methods for request details, enabling new

request types to be added without changing the existing code.

1.3.3 Liskov Substitution Principle (LSP)

To put it simply, Liskov Substitution Principle states that the subtypes must be substitutable for the base types.

In the case of our system, the usage of this principle is widely applied. One of the examples is the ‘Request’

class. Subclasses of the ‘Request’ include ‘StudentRegistrationRequest’, ‘TransferStudentRequest’ etc. All

those subclasses are substitutable for the ‘Request’ class object while ensuring the methods behave correctly.

When determining the request type of each different request, we may use different instances of requests to

call the ‘getRequestType’ method, and the corresponding method in the subclass will be called and return the

correct request type. Polymorphism is also applied here.

1.3.4 Interface Segregation Principle (ISP)

The interface segregation principle refers to that many specific interfaces are better than one general

interface. In other words, we should always avoid designing a ‘fat interface’. As such, when developing our

system, we noticed that this is important to promote maintainability, flexibility and modularity. For

instance, we found that the ‘Model’ must be further divided into separate interfaces such as User, Project

and Request so that the different entities can implement the interfaces accordingly. By doing so, we can

ensure that the entity classes don’t have to implement methods that are not related and reduce the ripple

effect when modifying our system.

Furthermore, we have applied the ISP in our project by

incorporating the Displayable interface. This aligns with

the principle of preferring specific interfaces over

general ones, avoiding a bloated interface. The

Page 4 of 12

Displayable interface defines two methods, getSplitter() and getdisplayableString(), allowing objects to be

formatted and displayed.

1.3.5 Dependency Injection Principle (DIP)

The dependency injection principle suggests that higher modules must not depend on lower modules, but

both should depend on abstraction. In other words, instead of directly depending on the concrete class to

perform some operation, we can depend on the interfaces, which are less likely to be changed. In our design,

we highly focus on this principle. For example, when getting the ID of a student user, instead of depending

on the ‘Student’ concrete class, we depend on the <User> interface. This will allow us to add more users

with the least effort needed in the future and make our system more extendable.

1.4 FURTHER ENHANCEMENT
For the further development of our system, we considered the situation that there may more than two

students requesting to register for a project created by the same supervisor. When any two of the requests

approved, the other requests will remain pending, and the students will be waiting forever for the request to

be approved. As such, we designed a feature such that whenever a supervisor is supervising 2 projects, the

other requests which are to register for the projects from the same supervisor will be rejected. By doing this,

we can ensure that there is no miscommunication occurred, and students will be able to know their status

and make their following decisions effectively.

On the other hand, we have made our system more friendly to the users. Every time the user is prompted to

enter the ID of a project or request, we will first display the viewable projects or requests (depending on user

type), then follow by asking the user to input the ID. With this, the users can interact better with our

system’s interface and thus increase its effectiveness.

1.5 REFLECTION

From this assignment, we have seen the importance of design principles through real application. At the

beginning phase of this assignment, we found that a slight change in our code will trigger a ripple effect,

causing that almost all other parts of our code must be changed. We then refer to the design principles and

apply them widely in our assignment. Therefore, software with high cohesion and loose coupling is

ultimately important, as to make it to have high flexibility, easily maintainable and extendable.

At the same time, we have learnt to design a software that fits its functions and real-world applications.

Considering all users for the software, we kept modifying our design so that it takes into considerations

different possible scenarios and ensures that there are no conflicts between the users.

Page 5 of 12

2 DETAILED /UML CLASS DIAGRAM

Please Refer to the <UMLClassDiagram> for further details.

2.1 MAIN DIAGRAM

Page 6 of 12

2.2 ENTITY SUB DIAGRAM

Page 7 of 12

2.3 CONTROLLER SUB DIAGRAM

2.4 BOUNDARY SUB DIAGRAM

Page 8 of 12

3 TESTING

3.1 WELCOME PAGE

3.1.1 Login Page

Upon entering the system, the user can choose from 3 different domains.

Here we use students as an example.

3.1.2 Forgot User ID

If the user chooses the option of forget UserID, the system will return the UserID of the user.

3.1.3 Change Password

Successfully change password

Entering a new password with fewer than 8 characters or incorrectly entering the password twice is not

permitted.

Page 9 of 12

3.1.4 Logout

3.2 Student Register and Deregister

3.2.1 Student sends a request to register a project

The system will first show a list of available projects to choose from. Student then chooses a project, the

system will ask student to confirm then submit the request

3.2.2 Coordinator approve registration request

The coordinator can choose to approve/reject request inside the coordinator main page

Page 10 of 12

The system will display all the pending request, and the coordinator can choose a request by the

RequestID to approve/reject.

3.2.3 Student requests to deregister

Student select the option to deregister. Student confirm to deregister.

After the coordinator approves the deregistration request, the student is not allowed to choose other

projects.

3.2.4 Three students request one supervisor

When two students have registered for the projects of a supervisor, the supervisor’s remaining project will

become unavailable.

Page 11 of 12

3.3 Change Title

3.3.1 Supervisor change title

The supervisor can choose a project from list of his projects to change the title. The system will then

prompt the user to enter new title. The system will change the title after confirming with the supervisor.

3.3.2 Student change title

Student can choose to modify his registered project’s title and send the request to the supervisor

Only the supervisor of the project have the permission to process the request

The new project title is successfully updated

Page 12 of 12

3.4 Transfer Student

Professor An has two allocated project, he decided to transfer one of the student to other supervisor.

After the Coordinator approve the request, the supervisor of the student will be successfully changed to the

new supervisor.

3.5 Supervisor create project

When two students have registered for the projects of a supervisor, the supervisor’s remaining project will

become unavailable.

