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Abstract

People can generally distinguish the characteristics of a speaker by their voice.
This project investigates how people identify others through specific features of
certain vocal signals. We have released a new dataset, DiffVoice, and explored
the differences in voices emitted by different individuals using various statistical
analysis methods. Our code can be found at https://github.com/pufanyi/
DiffVoice.

1 Introduction

Gender and age play a significant role in shaping the fundamental characteristics of vocal commu-
nication. Recognizing and understanding these differences is crucial for developing AI systems
capable of producing voices that resonate authentically with diverse audiences. With more and more
open-source voice samples available online today, we extract the data from voice samples, with
further analysis to gain more insight into this topic. Although the available voice samples remain
unprocessed and unrefined, our objective is to explore the correlation between voice frequency data
attributes and gender or age group of the respective voice sample.

In our project, a dataset comprising labels indicating gender and age group alongside various voice
frequency attributes is used. Our group downloaded open-source voice samples from the internet
and further extracted diverse voice frequency attributes to compile this dataset.

Based on this dataset, we seek to answer the following questions:

1. Is there a notable discrepancy in mean frequency between male and female voices?

2. Does the gender of a voice sample correlate with its mean fundamental frequency?

3. Are there distinct variations in the median of frequency between voices of different gen-
ders?

4. Can gender be discerned by examining the quantiles of voice frequency data?

5. Can we identify the age group of the voice sample by inferring from certain voice at-
tributes?

This report will cover the data descriptions and analysis using R language. For each of our research
objectives, we performed statistical analysis and draw conclusions in the most appropriate approach,
together with explanations and elaborations.
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Figure 1: The distribution of different genders, regional accents, and age groups.

2 Data Preparation

2.1 The DiffVoice Dataset

To investigate the correlation between vocal attributes and speaker demographics, we established
the DiffVoice dataset. This dataset was meticulously compiled from the English subset of the
Common Voice [1], ensuring a diverse representation of genders, regional accents, and age groups
(shown in Fig. 1).

The feature extraction pipeline for voice data involves the following steps:

1. Audio Loading: Initially, raw audio files are loaded and transformed into digital wave-
forms, serving as the foundation for subsequent analysis.

2. Preprocessing: The audio waveforms undergo normalisation and resampling procedures
to ensure uniformity across the dataset.

3. Feature Extraction: Subsequently, a comprehensive set of acoustic features is extracted,
including Mel-frequency cepstral coefficients (MFCCs), spectral centroid, spectral entropy,
spectral flatness, pitch, and magnitude, each providing insights into different facets of the
audio signal.

4. Statistical Aggregation: To synthesize the extracted data, statistical metrics such as the
mean, standard deviation, and median are computed, offering a condensed yet informative
representation of the features.

This pipeline transforms raw voice recordings into a set of numerical descriptors that capture the
essential qualities of the audio for analytical tasks.

The descriptions of the extracted features have been listed in Table 1.

For enhanced accessibility, the DiffVoice dataset, along with its comprehensive feature set, has
been systematically catalogued into CSV files and the HuggingFace Dataset form [2], providing a
centralized and user-friendly repository for data exploration and analysis. The dataset is available
for download at https://huggingface.co/datasets/pufanyi/DiffVoice.

2.2 Data Preparation

2.2.1 Data Normalization

The data preparation process starts with normalizing data, the steps can be described as follows:

1. Visualizing Data: Gaining a basic understanding of the data distribution using histogram
and boxplot. This visual representation easily allows us to assess the skewness or symmetry
of these distributions.

2. Assessing Normality: We then proceed to assess the normality of data by imposing a
normal PDF on the histogram and Quantile-Quantile Plot (QQ-plot).

3. Data Transformation: If the data is not normal, we tried to transform the data by selecting
a proper transformation function, and go to step 2 to check for normality again.

Fig. 2 presents the comprehensive pipeline for data normalisation.
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Feature Name Feature Description Feature Type
meanfreq Average frequency (kHz) Continuous Variable
sd Frequency standard deviation Continuous Variable
median Median frequency (kHz) Continuous Variable
Q25 First quartile (kHz) Continuous Variable
Q75 Third quartile (kHz) Continuous Variable
IQR Interquartile range (kHz) Continuous Variable
skew Skewness of the frequency distribution Continuous Variable
kurt Kurtosis of the frequency distribution Continuous Variable
sp.ent Spectral entropy Continuous Variable
sfm Spectral flatness measure Continuous Variable
mode Mode frequency Continuous Variable
centroid Frequency centroid Continuous Variable
meanfun Mean fundamental frequency across the signal Continuous Variable
minfun Minimum fundamental frequency across the signal Continuous Variable
maxfun Maximum fundamental frequency across the signal Continuous Variable
meandom Mean dominant frequency across the signal Continuous Variable
mindom Minimum dominant frequency across the signal Continuous Variable
maxdom Maximum dominant frequency across the signal Continuous Variable
dfrange Dominant frequency range Continuous Variable
modindx Modulation index Continuous Variable
age Age of the speaker Ordinal Variable
gender Gender of the speaker Nominal Variable
accent Accent of the speaker Nominal Variable

Table 1: Description of Features
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Figure 2: The pipeline for data preparation.
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Feature Before Transformation Transformation Function After Transformation

meanfreq Almost Normal log(x) Normal

sd Not Normal log(x+ 300) Normal

median Not Normal log(x+ 0.01) Almost

Q25 Not Normal log(x+ 70) Almost

Q75 Not Normal log(x+ 5000) Normal

IQR Almost Normal - -

skew Almost Normal - -

kurt Almost Normal - -

sp.ent Not Normal
√

log(x) + 10 Normal

sfm Not Normal
√

log(x) + 10 Almost Normal

mode Almost Normal log(x+ 100) Normal

centroid Not Normal log(x) Normal

meanfun Not Normal log(x+ 3) Almost Normal

minfun Not Normal log(10 log(x− 151.35) + 0.7) Almost Normal

maxfun Not Normal - Not Normal

meandom Not Normal log(x+ 0.01) Almost Normal

mindom Not Normal log(x) Almost Normal

maxdom Not Normal 3
√
x Normal

dfrange Not Normal 3
√
x Almost

modindx Almost Normal 3
√
x Normal

Table 2: Normalization transformations applied to features

Table 2 provides a detailed summary of the results from our data preparation phase.

Histograms are utilized to depict the distribution of variables pre- and post-transformation, as illus-
trated in Fig. 3.

Additionally, QQ-plots are employed to assess the normality of the variables, with comparisons
drawn between their states before and after transformation, as shown in Fig. 4.

For an illustration of the code used to normalize the sd column, see Appendix A.

2.2.2 Feature Selection

After transformation, we selected 9 features for further analysis: meanfreq, sd, median, Q25, Q75,
skew, sp.ent, sfm, meanfun.

2.2.3 Balancing Data

An initial data review revealed a significant imbalance, with male voice samples outnumbering fe-
male ones, as depicted in Fig. 1. The presence of entries with unspecified gender further complicated
the analysis.

To address this, we equalized the gender distribution within the dataset, ensuring that female data
were not overshadowed or misclassified as anomalies. We randomly selected samples from the
predominant gender category until they matched the count of the less-represented gender.
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Figure 3: Histogram of variables before and after transformation.
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Figure 4: QQ-plot of variables before and after transformation.

2.2.4 Outlier Removal

Following the balancing of the dataset, we conducted a thorough examination to detect outliers, as
such will enable us to maintain an equitable and impartial representation of both genders. Outliers
were defined as observations with values exceeding 1.5 times the interquartile range (IQR), which
is the range between the first and third quartiles. This method helps identify and address data points
that are significantly different from the overall pattern, ensuring the integrity of our analysis.

2.2.5 Rebalancing Data

Finally, we rebalance the data to ensure gender equality.

After all the preparation, there are a total of 1444 observations from female and male samples, with
722 male samples and 722 female samples.

3 Data Analysis and Testing

3.1 Data Analysis By Gender

3.1.1 General Description

The analysis methods generally unfold through the following stages:

• Data Visualization: We begin by creating a histogram and a boxplot to visually inspect
the distribution of the data, seperated by gender, shown in Fig. 5.

• Assessing Normality: Next, we check the normality by different methods including the
graph overlaid with a normal pdf, QQ-plot (Fig. 6 for male and Fig. 7 female) and Shapiro-
Wilk test [3].

If the data is normally distributed, we conduct an F-test to compare the variance of the data.

6



Histogram and KDE of meanfreq

meanfreq

D
en

si
ty

7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6

0.
0

0.
5

1.
0

1.
5

2.
0

Male
Female

Histogram and KDE of sd

sd

D
en

si
ty

8.3 8.4 8.5 8.6 8.7

0
1

2
3

4
5

6

Male
Female

Histogram and KDE of median

median

D
en

si
ty

6.5 7.0 7.5 8.0 8.5

0.
0

0.
5

1.
0

1.
5

Male
Female

Histogram and KDE of Q25

Q25

D
en

si
ty

6.5 7.0 7.5 8.0

0.
0

0.
5

1.
0

1.
5

2.
0

Male
Female

Histogram and KDE of Q75

Q75

D
en

si
ty

8.8 9.0 9.2 9.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5 Male

Female

Histogram and KDE of skew

skew

D
en

si
ty

−0.6 −0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5 Male

Female

Histogram and KDE of sp.ent

sp.ent

D
en

si
ty

3.10 3.15 3.20 3.25 3.30 3.35 3.40

0
2

4
6

8 Male
Female

Histogram and KDE of sfm

sfm

D
en

si
ty

1.8 2.0 2.2 2.4 2.6 2.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Male
Female

Histogram and KDE of meanfun

meanfun
D

en
si

ty

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Male
Female

Figure 5: Histogram of variables in both genders.

• Comparing variance using F-test: If the p-value from the F-test is less than 0.05, we reject
the null hypothesis that the variance of the data is the same across groups. Otherwise, we
do not reject the null hypothesis.

• Using two sample t-test: We proceed to perform a two-sample t-test. If the p-value from
the t-test is less than 0.05, we reject the null hypothesis that the mean of the data is the
same across groups. Otherwise, we do not reject the null hypothesis.

If the data is not normally distributed, we employ the Wilcoxon test to compare the mean of the data.

• Wilcoxon test for non-normally distributed data: If the p-value from the Wilcoxon test is
less than 0.05, we reject the null hypothesis that the mean of the data is the same across
groups. Additionally, by specifying the side in the Wilcoxon test, we can determine which
group has a smaller mean.

3.1.2 Analysis in Different Features

Mean Frequency Regarding meanfreq, we observe that the data for both males and females are
normally distributed. Consequently, we first apply an F-test to evaluate whether the variances for
male and female data are equivalent. With the null hypothesis H0: males and females have the
same variance and the alternative hypothesis H1: males and females have different variances, we
obtain a p-value of 0.04445. This result leads us to reject H0 in favour of H1. Subsequently, we
conduct a t-test with H0: males and females have the same means against H1: males and females
have different means. The resulting p-value of 0.849 indicates that we cannot reject H0. Contrary
to intuition, this suggests that there is virtually no difference in mean frequency between males and
females. Then, what could be the cause behind the common perception that female voices are more
shrill than male voices? We attempt to investigate this further by examining other variables.
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Figure 6: QQ-plot of male dataset.

Median Frequency The non-parametric test – one-sided Wilcoxon Test is applied due to the non-
normal distribution, with null hypothesis H0: Distribution of male median and female median are
the same; alternative hypothesis H1: Distribution of male median has smaller values than female
median. The p-value from the test is 8.022×10−5 which is less than the significant value. Thus, we
reject H0 in favour of H1, supporting the distribution of male median has smaller values than female
median. This indicates that males generally have a lower median pitch in their voices compared to
females.

First Quartile of Frequency While the Q25 data for males is normally distributed, the skewness
observed in the female Q25 necessitates the use of a non-parametric test. We employ a one-sided
Wilcoxon test, positing the null hypothesis H0: The distributions of male and female Q25 are iden-
tical, against the alternative hypothesis H1: The distribution of male Q25 skews towards smaller
values compared to female Q25. The exceedingly small p-value of 2.2 × 10−16, well below the
threshold of significance, leads us to reject H0 in favor of H1. This finding corroborates that the
distribution of male Q25 indeed gravitates towards smaller values than that of females. This suggests
that despite similar average frequencies, females tend to have fewer low-frequency components in
their voices compared to males.

Third Quartile of the Frequency After justifying the non-normal distribution of the data, a one-
sided Wilcoxon test is applied, with null hypothesis H0: Distribution of male Q75 and female Q75
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Figure 7: QQ-plot of female dataset.

are the same; alternative hypothesis H1: Distribution of male Q75 has smaller values than female
Q75. The p-value from the test is 0.0007 which is less than the significant value. Thus, we reject H0

in favour of H1, supporting the distribution of male Q75 has greater values than female Q75. This is
also quite surprising, which means that in fact, males are capable of producing high-pitched sounds
as well.

Skewness of the Frequency Distribution Same as above, a one-sided Wilcoxon test is applied, with
null hypothesis H0: Distribution of male skew and female skew are the same; alternative hypothesis
H1: Distribution of male skew has smaller values than female skew. The p-value from the test is
2.2× 10−16 which is less than the significant value. Thus, we reject H0 in favour of H1, supporting
the distribution of male skew has smaller values than female skew. Another interesting thing we
can find in Fig 5 is that most of the females are right-skew and most of the males are left-skew. This
could suggest that male voices tend to have a fuller sound in the lower frequency range, while female
voices may exhibit a fuller sound in the higher frequency range.

Spectral Entropy One-sided Wilcoxon test is applied, with null hypothesis H0: Distribution of male
sp.ent and female sp.ent are the same; alternative hypothesis H1: Distribution of male sp.ent
has smaller values than female sp.ent. The p-value from the test is 5.564 × 10−8 which is less
than the significant value. Thus, we reject H0 in favour of H1, supporting the distribution of male
sp.ent has larger values than female sp.ent. Which suggests that there is a greater complexity
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or randomness in their sound spectra. This could imply that male voices have a richer variety of
frequencies or a less predictable structure compared to female voices, potentially contributing to a
perception of a “rougher” or more “textured” quality in male speech.

Spectral Flatness Measure In this case, a two-sided Wilcoxon test is applied, with null hypothesis
H0: Distribution of male sfm and female sfm have no significant difference; alternative hypothesis
H1: Distribution of male sfm has significant difference compared female sfm. The p-value from the
test is 0.8317 which is larger than the significant value. Thus, we do not reject H0 in favour of H1,
supporting the distribution of male sfm has no significant difference compared to female sfm.

Mean Fundamental Frequency Across the Signal The data in meanfun are not normally dis-
tributed as suggested from the result of the Shapiro-Wilk Test, we apply the non-parametric test –
Wilcoxon Test with null hypothesis H0: Distribution of male meanfun and female meanfun are
the same; alternative hypothesis H1: Distribution of male meanfun has larger values than female
meanfun. The p-value from the test is 1.859 × 10−5 which is less than the significant value. Thus,
we reject H0 in favor of H1, supporting the distribution of male meanfun has higher values than
female meanfun.

3.1.3 Outcomes

The outcomes of our analysis challenge traditional assumptions. We found that, contrary to popu-
lar opinion, the average frequencies produced by both male and female voices are nearly identical.
Nonetheless, female voices are more commonly found at higher frequency ranges, whereas male
voices predominantly occupy lower frequency ranges, even though they are also capable of reaching
higher pitches. Moreover, the sound spectra of male voices demonstrate a higher degree of complex-
ity or variability, potentially leading to the impression that male voices have a “rougher” or more
“textured” quality.

3.2 Data Analysis By Age

We investigate whether distinct age groups exhibit varying characteristics. This examination utilizes
the same features as those employed in the gender analysis.

3.2.1 Methodology

Similar to the approaches in analysis of gender, we balance the data based on gender equity first.
Then we conduct the following step on each features across different age groups:

• Visualizing the data: Boxplots are firstly used to illustrate the distribution of the data across
different age groups. Each boxplot displays the median, quantiles, and outliers for each age
group.

• Checking for normality: Shapiro-Wilk tests are performed on the mean frequency data
within each age group to determine if the data follows a normal distribution.

• Comparing differences between age groups:

– For normally distributed data, we employ an ANOVA model to discern any significant
differences across age groups.

– For data that does not follow a normal distribution, Kruskal-Wallis tests are utilized
to identify significant differences between age groups.

• Upon detecting notable differences, we proceed with pairwise comparisons to pinpoint
specific age groups that differ:

– Pairwise t-tests are used for data adhering to normality.
– For non-normal data, pairwise Wilcoxon tests are conducted.

We would now use the test for mean frequency across different age groups as an example. We first
visualise the distribution of the data in Fig. 8 The Shapiro-Wilk test suggest that most age group
does not follow a normal distribution. The result of the Pairwise Wilcoxon Test is shown in Fig. 9

We perform tests for each feature. For each feature, data is not normally distributed based on the
age group, and the result of Shapiro-Wilk test suggests that there is no feature such that there is no
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Figure 9: Pairwise Wilcoxon Test Result.

significance difference between all age groups. there and the detailed results will be provided in the
appendix.

3.2.2 Outcomes

After the tests, we listed our outcomes as below.

meanfreq There is no significant difference between the mean frequency of the thirties and sixties
age groups, nor between the thirties and seventies age groups.

sd There is no significant difference between the standard deviation of the teens and fifties age
groups, teens and seventies age groups, thirties and sixties age groups, nor fifties and seventies age
groups.

Q25 There is no significant difference between the Q25 of the teens, twenties and thirties age groups.

Q75 There is no significant difference between the Q75 of the teens and fifties age groups, thirties
and sixties age groups, forties and fifties age groups, nor sixties and seventies age groups.

skew There is no significant difference between the skewness of the teens, twenties and sixties age
groups, thirties and fifties age groups, nor thirties and sixties age groups.

sp.ent There is no significant difference between the sp.ent of the twenties and sixties age groups.
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Figure 10: Correlation Matrix.

sfm There is no significant difference between the sfm of the teens and fourties age groups, teens and
fifties age groups, twenties and sixties age groups, thirties and seventies, nor sixties and seventies
age groups.

minfun There is no significant difference between the minfun of the sixties and seventies age groups.

3.3 Correlation Between Numerical Features

We visualise the correlation between all variables based on the transformed data in Fig. 10. We can
get a glimpse of the correlation between variables.

We also plot a scatter plot to visualize the correlation between some variables (meanfreq, median,
Q25, Q75, meandom) based on different genders. As shown in Fig. 11.

4 Regression Analysis

In this section, we will explore regression analysis techniques to understand the relationship between
various features extracted from voice samples and the target variable. Additionally, we will delve
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Figure 11: Scatter Matrix.

into logistic regression and k-nearest neighbours (KNN) classification to predict gender based on
voice features.

4.1 Relations Amount Features of Voice

4.1.1 Simple Linear Regression

We will begin by examining the relationship between individual features and mean frequency (mean-
freq) using simple linear regression. Specifically, we will select a subset of features that are likely
to have a significant impact on mean frequency based on prior knowledge or domain expertise. Fea-
tures such as meanfun, meandom, mindom and maxdom are some of the variables we will consider.

Initially, we perform a correlation test to examine the presence of any relationships. If a non-zero
correlation is established, we proceed with linear regression to analyze the relationship between
meanfreq and the chosen feature. Finally, we plot a scatter diagram to visualize and assess the
efficacy of the model.

meanfun We conduct a correlation test between meanfreq and meanfun, since the p-value is
smaller than 0.05, we reject H0. Therefore, the correlation is not equal to 0. We then use sim-
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Figure 12: Simple Linear Regression.

ple linear regression model to fit the data, with ŷ = 0.30272 · x+ 6.97028 and R-Sqaure of 0.2849.
Thus, we can conclude that meanfreq and meanfun are positively correlated.

meandom We conduct a correlation test between meanfreq and meandom, since the p-value is
smaller than 0.05, we reject H0. Therefore, the correlation is not equal to 0. We then use simple
linear regression model to fit the data, with ŷ = −0.12007 · x + 7.52414 and R-Square of 0.2555.
Thus, we can conclude that meanfreq and meandom are negatively correlated.

mindom We conduct a correlation test between meanfreq and mindom, since the p-value is smaller
than 0.05, we reject H0. Therefore, the correlation is not equal to 0. We then use simple linear
regression model to fit the data, with ŷ = −0.028755 · x + 7.543237 and R-Sqaure of 0.05978.
Thus, we can conclude that meanfreq and mindom are negatively correlated.

maxdom We conduct a correlation test between meanfreq and maxdom, since the p-value is smaller
than 0.05, we reject H0. Therefore, the correlation is not equal to 0. We then use simple linear
regression model to fit the data, with with ŷ = −0.036590 · x+8.040413 and R-Square of 0.02178.
Thus, we can conclude that meanfreq and maxdom are negatively correlated.

We plotted scatter plot with fitted line for these four features in Fig. 12.

4.1.2 Multiple Linear Regression

Moreover, we will extend our analysis to multiple linear regression, where we simultaneously con-
sider multiple predictor variables to predict mean frequency. This will allow us to assess the com-
bined effect of various features on mean frequency, providing a more comprehensive understanding
of the relationship. Similar to simple linear regression, we use features such as meanfun, meandom,
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mindom and maxdom to predict the meanfreq.

ŷ = 2124.7260

+ 43.0794 ·Xmeanfun

− 7431.3557 ·Xmeandom

− 8434.6393 ·Xmindom

+ 1.5605 ·Xmaxdom

+ ϵ

We utilize this formula to predict the value of meanfreq, and generate a diagram as below, Fig. 13.

4.2 Relationship Between Voice Feature And Speaker

4.2.1 Logistic Regression

Moving beyond linear regression, we will explore logistic regression to predict gender based on
voice features. Logistic regression is a powerful tool for binary classification problems, such as
predicting gender (male/female) based on voice characteristics. By employing logistic regression,
we aim to build a robust predictive model that accurately classifies the gender of speakers based on
their voice attributes.

1

1 + e−(101.25+11.20x)

We obtain an accuracy of the test set at 94.37%. Which is quite high. Therefore, the model performs
well in predicting the gender categories.

’True Positive Rate’ represents the proportion of actual "male" cases correctly identified, which is
93.75%.

’True Negative Rate’ represents the proportion of actual "female" cases correctly identified, which
is 95.00%.

’False Positive Rate’ represents the proportion of actual "female" cases incorrectly classified as
"male", which is 5.00%.

’False Negative Rate’ represents the proportion of actual "male" cases incorrectly classified as "fe-
male", which is 6.25%.
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Figure 14: Logistic Regression heatmap and KNN hearmap.

Overall, the logistic regression model appears to perform well, with high accuracy and relatively low
error rates.

4.2.2 K Nearest Neighbour

Finally, we will explore KNN classification to predict gender based on voice features. KNN classifi-
cation leverages the proximity of data points in feature space to make predictions, making it suitable
for classification tasks where data points with similar features are likely to belong to the same class.
By employing KNN classification, we aim to develop an accurate model for gender prediction based
on voice characteristics.

We obtain an accuracy of test set at 92.49%, which is quite high. Therefore, the model performs
well in predicting the gender categories.

’True Positive Rate’ represents the proportion of actual "male" cases correctly identified, which is
92.96%.

’True Negative Rate’ represents the proportion of actual "female" cases correctly identified, which
is 88.03%.

’False Positive Rate’ represents the proportion of actual "female" cases incorrectly classified as
"male", which is 11.98%.

’False Negative Rate’ represents the proportion of actual "male" cases incorrectly classified as "fe-
male", which is 7.04%.

Overall, the K-Nearest Neighbour model appears to perform well, with high accuracy and relatively
low error rates.

We plot a heatmap to illustarte the accuracy of both Logistic Regression Model and K-Nearest
Neighbor, in Fig. 14.

5 Conclusion and Discussion

In summary, our project, "How You Distinguish People by Voice", revealed several findings about
the correlation between various voice frequency data attributes and demographic factors including
gender and age.

We have concluded the following key findings which answer the 4 questions above: 1. Based on
our analysis, the mean frequency between male and female voices has NO significant difference,
as suggested by the statistical tests conducted. 2. In fact, the male mean fundamental frequency is
much higher than the female mean fundamental frequency. By conducting the Shapiro-Wilk Test
and Wilcoxon Test, we obtain a relatively small p-value. Therefore, we reject the hypothesis where
male mean fundamental frequency and female mean fundamental frequency are the same. 3. As
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suggested from our analysis, males generally have a lower median frequency as compared to the
female voice. 4. Surprisingly from our analysis, there is enough evidence to support that the third
quantile of males has greater values than that of females. However, upon examining the distribution
graph, the difference is not very significant. On the other hand, there is enough evidence to support
that the first quantile of males has smaller values than that of females. 5. Generally, the features will
have different mean values across different age groups.
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A Sample Code for the Project

Data Analysis for SD

Load Data

data_path <- "../../data/original/train.csv"
voice <- read.csv(data_path)
head(voice)

## id meanfreq sd median Q25 Q75 IQR skew
## 1 0 3521.667 2332.212 2997.294 1660.408 4621.867 2961.459 0.11656897
## 2 1 4189.998 2430.977 4302.741 1832.028 5901.071 4069.043 0.04560770
## 3 2 3154.455 2150.497 2609.968 1460.612 4053.928 2593.316 -0.16147499
## 4 3 4384.338 3029.302 3426.479 1596.072 7283.314 5687.242 0.02416762
## 5 4 4557.150 3158.111 4543.116 1608.165 8074.335 6466.170 0.11711588
## 6 5 4069.004 2983.199 2565.487 1305.284 6961.581 5656.297 0.13049391
## kurt sp.ent sfm mode centroid meanfun minfun maxfun
## 1 0.9817728 2.308696 0.008450270 1761.333 3521.667 32.33476 153.1934 3995.790
## 2 0.9214181 3.522410 0.022862796 2095.499 4189.998 42.56545 154.0434 3993.462
## 3 0.3882481 2.027891 0.006853276 1577.728 3154.455 26.15712 153.4610 3995.524
## 4 1.4739316 4.823092 0.084471270 2192.669 4384.338 37.56627 153.6399 3994.671
## 5 1.2885699 3.820815 0.100988194 2279.075 4557.150 29.34924 153.8535 3994.646
## 6 0.7668548 3.726702 0.073939204 2035.002 4069.004 29.89368 153.2515 3995.253
## meandom mindom maxdom dfrange modindx age gender accent
## 1 0.06084856 9.842593e-04 194.17128 194.17029 5914.581 twenties female canada
## 2 0.04495757 7.060266e-04 102.27859 102.27788 7693.945 twenties female canada
## 3 0.08144125 2.950821e-04 164.99316 164.99287 5261.606 twenties female canada
## 4 0.01039643 3.165859e-08 29.66787 29.66787 7942.756 nan nan nan
## 5 0.01848914 9.267869e-07 85.19259 85.19259 8383.634 nan nan nan
## 6 0.01521549 6.052965e-07 32.57839 32.57839 7575.469 nan nan nan

Visualizing the Data
We selected sd column to perform the analysis.

First, we load the data and draw a histogram of the sd column to get an initial understanding of the data
distribution.
sd <- voice$sd
hist(sd, breaks = 80, main = "Histogram of sd", xlab = "sd")
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Histogram of sd
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Then, we generate the descriptive statistics of the sd column.
library(psych)
describe(sd, type = 1)

## vars n mean sd median trimmed mad min max range skew
## X1 1 12135 1940.3 555.86 1896.32 1918.18 580.72 402.55 4202.62 3800.07 0.33
## kurtosis se
## X1 -0.31 5.05

Assessing Data Normality
After that, we assess the normality of the sd column by drawing a histogram with a normal curve and a Q-Q
plot.
hist(sd, breaks = 80, main = "Histogram of sd", xlab = "sd")
# impose a normal curve on the histogram
xpt <- seq(402, 4203, by = 0.1)
n_den <- dnorm(xpt, mean = mean(sd), sd = sd(sd))
ypt <- n_den * length(sd) * 50
lines(xpt, ypt, col = "red")
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Histogram of sd
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Transformation
We found that the data is almost normally distributed, but not perfect. We tried to log-transform the data
to see if it can be improved.
sd_trans <- log(sd)
hist(sd_trans, breaks = 80, main = "Histogram of log(sd)", xlab = "log(sd)")
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qqnorm(sd_trans)
qqline(sd_trans, col = "red")
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We observed that after log-transformation, the data’s fit to a normal distribution did not improve as expected.

Therefore, we explored an alternative transformation: y = log(x + 3000)
sd_trans <- log(sd + 3000)

hist(
sd_trans,
breaks = 80,
main = "Histogram of log(sd)",
xlab = "log(sd)",
probability = TRUE

)

curve(
dnorm(x, mean = mean(sd_trans), sd = sd(sd_trans)),
col = "red",
lwd = 2,
add = TRUE

)
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And we checked the Q-Q plot of the transformed data.
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qqnorm(sd_trans)
qqline(sd_trans, col = "red")
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Finally, we calculated the descriptive statistics of the transformed data.
describe(sd_trans)

## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 12135 8.5 0.11 8.5 8.5 0.12 8.13 8.88 0.75 0.07 -0.44 0
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Data Analysis by Age on Mean Frequency

Data Preparation

voice <- read.csv("../../data/gender/balanced_train.csv")
head(voice)

## meanfreq sd median Q25 Q75 skew sp.ent sfm
## 1 8.153891 8.570102 8.002904 7.328629 9.291727 -0.199356530 3.369166 2.584677
## 2 7.846562 8.423659 7.689777 7.146453 9.074857 -0.007415137 3.253375 2.378387
## 3 7.637648 8.369293 7.497563 6.976269 8.985667 -0.016312126 3.214666 2.115166
## 4 7.542351 8.426862 7.100093 6.743659 8.928714 -0.054684730 3.160715 2.180566
## 5 7.681082 8.358729 7.607353 7.034379 8.995721 -0.124070090 3.151379 2.457708
## 6 7.584942 8.456333 6.927504 6.782198 8.959107 -0.167355900 3.146243 2.412977
## meanfun gender
## 1 3.817343 male
## 2 3.183698 male
## 3 3.052549 male
## 4 2.337924 male
## 5 2.251824 male
## 6 2.393773 male

male_data <- voice[voice$gender == "male", ]
female_data <- voice[voice$gender == "female", ]
head(male_data)

## meanfreq sd median Q25 Q75 skew sp.ent sfm
## 1 8.153891 8.570102 8.002904 7.328629 9.291727 -0.199356530 3.369166 2.584677
## 2 7.846562 8.423659 7.689777 7.146453 9.074857 -0.007415137 3.253375 2.378387
## 3 7.637648 8.369293 7.497563 6.976269 8.985667 -0.016312126 3.214666 2.115166
## 4 7.542351 8.426862 7.100093 6.743659 8.928714 -0.054684730 3.160715 2.180566
## 5 7.681082 8.358729 7.607353 7.034379 8.995721 -0.124070090 3.151379 2.457708
## 6 7.584942 8.456333 6.927504 6.782198 8.959107 -0.167355900 3.146243 2.412977
## meanfun gender
## 1 3.817343 male
## 2 3.183698 male
## 3 3.052549 male
## 4 2.337924 male
## 5 2.251824 male
## 6 2.393773 male

head(female_data)

## meanfreq sd median Q25 Q75 skew sp.ent sfm
## 726 8.166690 8.581521 8.005468 7.456112 9.171794 0.1165690 3.291912 2.286142
## 727 8.340455 8.599874 8.367010 7.550676 9.296616 0.0456077 3.355465 2.494345
## 728 8.056571 8.546849 7.867097 7.333423 9.110954 -0.1614750 3.272155 2.239860
## 729 8.267929 8.654711 7.734899 7.329590 9.392445 0.1786457 3.301512 2.239053
## 730 7.695245 8.401543 7.485312 6.902178 9.032689 0.2401945 3.160920 2.571130
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## 731 8.058577 8.526025 7.825418 7.218233 9.224732 0.2416200 3.262145 2.565457
## meanfun gender
## 726 3.564867 female
## 727 3.819150 female
## 728 3.372699 female
## 729 3.160863 female
## 730 2.638777 female
## 731 3.231355 female

Visualizing the data

visualize_data <- function(column) {
# return(male_data[column])
hist(

male_data[[column]],
xlab = column,
col = MALE_COLOR,
prob = TRUE,
breaks = 80,
border = "white",
main = sprintf("Histogram and KDE of %s", column)

)
hist(

female_data[[column]],
xlab = column,
col = FEMALE_COLOR,
prob = TRUE,
add = TRUE,
breaks = 80,
border = "white"

)

# Calculate and plot KDE for male data
male_density <- density(male_data[[column]])
lines(male_density, col = "blue", lwd = 2)

# Calculate and plot KDE for female data
female_density <- density(female_data[[column]])
lines(female_density, col = "red", lwd = 2)

legend(
"topright",
legend = c("Male", "Female"),
col = c("blue", "red"),
lwd = 2,
fill = c(MALE_COLOR, FEMALE_COLOR)

)
}

We first visualize the data by plotting the histogram.
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visualize_data("meanfreq")

Histogram and KDE of meanfreq
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variable <- "meanfreq"
boxplot(male_data[[variable]], female_data[[variable]])
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QQ-plot

We then plot the QQ-plot to check for normality
qqnorm(male_data$meanfreq)
qqline(male_data$meanfreq, col = "red")
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qqnorm(female_data$meanfreq)
qqline(female_data$meanfreq, col = "red")

5

28



−3 −2 −1 0 1 2 3

7.
2

7.
6

8.
0

8.
4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

shapiro.test(male_data$meanfreq)

##
## Shapiro-Wilk normality test
##
## data: male_data$meanfreq
## W = 0.99583, p-value = 0.04956

shapiro.test(female_data$meanfreq)

##
## Shapiro-Wilk normality test
##
## data: female_data$meanfreq
## W = 0.99301, p-value = 0.0018

Based on the QQ-plot, we can see that the data is normally distributed. We would therefore use the F test
to compare the variance of the data

F-test

var.test(male_data$meanfreq, female_data$meanfreq)

##
## F test to compare two variances
##
## data: male_data$meanfreq and female_data$meanfreq
## F = 0.86113, num df = 724, denom df = 724, p-value = 0.04445
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## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7443040 0.9962966
## sample estimates:
## ratio of variances
## 0.8611315

Since the p-value is less than 0.05, we reject the null hypothesis that the variance of the data is the same, we
would therefore use the two sample t-test with unequal variance

Two Sample T-test

t.test(male_data$meanfreq, female_data$meanfreq, var.equal = FALSE)

##
## Welch Two Sample t-test
##
## data: male_data$meanfreq and female_data$meanfreq
## t = -0.19049, df = 1440, p-value = 0.849
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.02973444 0.02447059
## sample estimates:
## mean of x mean of y
## 7.870237 7.872869

Since the p-value is greater than 0.05, we do not reject the null hypothesis that the mean of the data is the
same.
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